Production of α-Amylase Inhibitors of Aspergillus RD2 from Dewandaru (Eugenia uniflora L.) as Diabetes Drug

Kiara Lutfiyah(1), Sri Pujiyanto(2), Siti Nur Jannah(3),


(1) Departement Biology, Faculty of Mathematics and Natural Sciences, Diponegoro University, Semarang, Indonesia
(2) Departement Biology, Faculty of Mathematics and Natural Sciences, Diponegoro University, Semarang, Indonesia
(3) Departement Biology, Faculty of Mathematics and Natural Sciences, Diponegoro University, Semarang, Indonesia

Abstract

Diabetes mellitus is a metabolic disorder characterized by above normal blood glucose levels. A α-amylase inhibitors have inhibitory activity against α-amylase enzymes and cause decrease in glucose absorption. Dewandaru (E. uniflora L.) has the potential to produce compounds capable of controlling blood glucose levels. Aspergillus RD2 from twigs of the Dewandaru plant is expected to be able to produce antidiabetic compounds. This study aimed to determine the ability of the Aspergillus RD2 to produce α-amylase inhibitors by determining the production time, extracting α-amylase inhibitor compounds, testing the activity of the supernatant αα-amylase inhibitor and ethyl acetate extract with various concentrations of 2%, 4%, 6%, 8%, 10% and GC-MS analysis. The results showed the Aspergillus RD2 was able to produce αα-amylase inhibitors with an inhibitory activity of 59.71%. The incubation time of the Aspergillus RD2 in producing the highest α-amylase inhibitor was on the 7th day. The highest α-amylase inhibitor activity was at a concentration of 6% extract with an inhibition percentage of 82.79%. 9-Octadecenoic acid, 9-Octadecenal and n-Hexadecanoic acid were identified as having α-amylase inhibitor and antidiabetic activity. Aspergillus RD2 is able to produce α-amylase inhibitor compounds that have the potential to be used as antidiabetic drugs.

Keywords

α-amylase Inhibitor, Aspergillus RD2, Dewandaru plant, Antidiabetic

Full Text:

PDF

References

Andrade, J. M., R. Marin., M. A. Apel., M. C. B. Raiseira., & T. Henriques. (2010). Comparison of the fatty acid profiles of edible native fruit seeds from southern brazil. Journal of Food Properties, 15(4), 815-822.

Barrett, M. L., & J. K. Udani. (2011). A proprietary α-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutrition Journal, 10(24), 1-10.

Bhaskar, A., V. Nithya., & V. G. Vidhya. (2011). Phytochemical evaluation by gc-ms and anti-hyperglicemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats. Journal of Chemical and Pharmaceutical, 3(5), 689-696.

Borges K. C., M. D. F. Bezzera., M. P. Rocha., E. S. D. Silva & R. T. C. Pinto. (2016). Fresh and spray dried pitanga (Eugenia uniflora) and jambolan (Syzygium cumini) pulps are natural sources of bioactive compounds with functional attributes. Journal of Probiotics and Health, 4(2), 1-8.

Chelladurai, G. R. M., and C. Chinnachamy. 2018. Alpha amylase and alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Brazillian Journal of Pharmaceutical Sciences, 54(1), 1-10.

Chun-Han, S., H. Chun-Hua., & Ng. Lean-Teik. (2013). Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. International Union of Biochemistry and Molecular Biology, 39(4), 415-421.

Dinicolantonio, J. J., J. Bhutani., & J. H. O’Keefe. (2015). Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart, 2, 1-16.

Ferniah, S. R., A. L. N. Aminin., & M. Suzery. (2018). Preliminary Study of Hytus pectinate (L.) Poit extract biotransformation by Aspergillus niger. Materials Science and Engineering, 349, 1-7.

Fidelis, E. M., A, S. P. Savall., F. D. Pereira., C. B. Quines., D. S. Avila., & S. Pinton. (2022). Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: a review. Arabian Journal Chemistry, 15, 1-21.

FoodB.2022.https://foodb.ca/compounds/FDB002948.

Goncalves, A. E. de souza., F. M. Lajolo., & M.I. Genovese. (2010). Chemical composition of brazilian native fruits and commercial frozen pulps. Agriculture and Food Chemistry, 58(8), 4666-4674.

Hashim, M. A., M. F. Yam., S. Y. Hor., C. P. Lim., M. Z. Asmawi., & A. Sadikun. (2013). Anti-gyperglycaemic activity of Swietenia macrophylla king (meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chinese Medicine, 8(11), 1-8.

Iwara, A., E. O. Mboso., O. E. Eteng., K. N. Elot., G. O. Igile., & P. E. Ebong. (2022). Peristrophe bicalyculata extract and quercetin ameliorate high fat diet-streptozotocin-induced type II diabetes in wistar rats. Pharmacological Research-Modern Chinese Medicine, 2, 1-9.

Kifle, Z. D., S. G. Debeb., & Y. M. Belayneh. (2021). In vitro α-amylase and α-glucosidase inhibitory and antioxidant activities of the crude extract and solvent fractions of Hagenia abyssinica leaves. BioMed Research International, 1-9.

Kotowari, M. I., M. F. Mahomoodally., A. G. Fakim., & A. H. Subratty. (2006). Screening of traditional antidiabetic medicinal plants of mauritius for possible alpha amylase inhibitory effect in vitro. Phytother Res, (20), 228-231.

Malik, A., H. Ardalani., S. Anam., L. M. McNair., K. J. K. Kromphardt., R. J. N. Frandsen., H. Franzyk., D. Staerk., & K. T. Kongstad. 2020. Antidiabetic xanthones with -glucosidases inhibitory activities from an endophytic Penicillium canescens. Fitoterapia, 142, 1-10.

Manaithiya, A., O. Alam., V. Sharma., M. J. Naim., S. Mittal., & I. A. Khan. (2021). GPR119 against: novel therapeutic agents for type 2 diabetes mellitus. Bioorganic Chemistry, 113, 1.-39.

Meilia, O., dan D. Purwandarie. (2017). Uji aktivitas antidiabetes dari ekstrak etanol 70% buah kiwi (Actinidia deliciosa) melalui penghambatan aktivitas enzim α-glukosidase. Farmagazine, IV (1), 19-29.

Michelle de Sales, P., Monteiro de Souza., L. A. Simeoni., P. de Oliveira Magalhaes., & D. Silveira. (2012). -amylase inhibitor: a review of raw material and isolated compounds from plant source. Journal Pharm Pharmaceut Sci, 15(1), 141-183.

Octavia, A., & S. Wantini. (2017). Perbandingan pertumbuhan jamur Aspergillus flavus pada media PDA (potato dextrose agar) dan media alternatif singkong (Manihot esculenta Crantz). Jurnal Analis Kesehatan, 6(2), 625-631.

Olokoba, A.B., O. A. Obateru., & L. B Olokoba. (2012). Type 2 Diabetes Mellitus: A Review of Current Trends. Oman Medical Journal, 27(4) :269-273

Pujiyanto, S., Wijanarka., B. Raharga & V. Anggraeni. (2019). Aktivitas inhibitor α-amilase eksrak etanol tanaman brotowali (Tinospora crispa L.). Bioma, 21(2).

Rumidatul, A., N. Rahmawati., & S. Sunarya. (2021). Production of secondary metabolite and its antibacterial and antioxidant activity during the growth period of endophytic fungi isolated from gall rust sengon plants. Pharmacogn Journal, 13(2), 325-331.

Santoso, P., K. A. Adrianta. & N. P. S. Sigiantari. (2018). Kombinasi antidiabetes ekstrak buah dewandaru (Eugenia uniflora L.) dan ekstrak daun salam (Eugenia polyantha) pada tikus putih jantan (Rattus norvegicus). Jurnal Ilmiah Medicamento, 4(1), 66-70.

Siregar, P. I., S. Pujiyanto., & A. T. Lunggani. (2022). Inhibitory activity of endophytic fungi against α-amylase isolated from raru (Cotylelobium melanoxylon). Berkala Penelitian Hayati, 28(1), 44-50.

Pinu, F. R., & S. G. Villas-Boas. (2017). Review: extracellular microbial metabolomics: the state of the art. Metabolites, 7(43), 1-15.

Singh, B., & A. Kaur. (2015). Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. Journal Applied Microbiology, 120, 301-311.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.