Potential of Therapeutic Curculigo latifolia Extracts on Alloxan-induced Diabetes in a Male Mus muscullus

Haryanto Haryanto(1), Agus Sutandi(2), Eni Kusumawati(3), Sari Nurhayati(4), Fadillya Maulidilla Fitri(5), Ginan Nafsi(6), Sri Wahyuni Nuraeni(7),


(1) Department of Biotechnology, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(2) Department of Agribusiness, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(3) Department of Agribusiness, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(4) Department of Biotechnology, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(5) Department of Biotechnology, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(6) Department of Biotechnology, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia
(7) Department of Biotechnology, Faculty of Science and Technology, Muhammadiyah University of Bandung, Indonesia

Abstract

Curculigo latifolia is a herbaceous plant that is abundant on the islands of Java, Sumatra and Kalimantan. C. latifolia has not been well explored. The research to determine the phytochemical content of C. latifolia, to analyze the organoleptic sweetness level of C. latifolia fruit and to analyze the anti-diabetic potential of C. latifolia plant extracts on  diabetic mice. The study was conducted experimentally using  6 treatment levels and 4 replications. Prior to treatment, mice were induced hyperglycemia using alloxan 150 mg/kg WB were induced subcutaneously. The treatment being tested was oral Ethanol crude extract (ECE) for 28 days with 400 mg/kg WB, namely: G1: oral mineral water; G2: glibenclamide ; G3: ECE leaf; G4: ECE root; G5: ECE fruit and G6: ECE tree. Blood sugar levels were measured at 0, 7, 14, 21 and 28 days after oral ECE. Therefore, respondents stated that after consuming the fruit, they had a sweet-tasting and taste-modifying mineral water with a strength of 82.40 ± 8.36%, but the fruit extract did not show any sweet-tasting and taste-modifying. ANOVA results showed that oral ECE administration had a significant effect low on blood sugar levels. the HSD test was carried out with a 95% confidence level. ECE C. latifolia showed positive results on the tests of flavonoids, phenolics, saponins, alkaloids, triterpenoids and tannins. G4 was effective in reducing sugar levels after short time and  G5 for 28 days (long time). C. latifolia have pharmacology effects to lower sugar levels and has taste modifying to sweetness.

Keywords

blood glucose; ethanol crude extract (ECE); hypoglycemic effect

Full Text:

PDF

References

Al-Goblan, A., Al-Alfi, M., & Khan, M. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity, 7, 587–591.

Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 1–35.

Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Frontiers in Endocrinology, 13, 1–35.

Barky, A. El, Hussein, S. A., Eldeen, A., Hafez, Y., & Mohamed, T. (2017). Saponins-and-Their-Potential-Role-in-Diabetes-Mellitus. Diabetes Management, 7(1), 148–158.

Bhanudas, K. S., & Gopal, P. (2016). Histological structure of pancreas in normal control, diabetic control and extract treated Albino rats. Int. J. of Life Sciences, 4(1), 78–82. www.ijlsci.in

Bukhari, I. S. S., Abbasi, M. H., & Ahmad, M. K. (2015). Dose optimization of Alloxan for diabetes in albino mice. Biologia (Pakistan), 61(2), 301–305.

Choy, K. W., Zain, Z. M., Murugan, D. D., Giribabu, N., Zamakshshari, N. H., Lim, Y. M., & Mustafa, M. R. (2021). Effect of Hydrolyzed Bird’s Nest on β-Cell Function and Insulin Signaling in Type 2 Diabetic Mice. Frontiers in Pharmacology, 12(April), 1–11.

Eriani, K., Hasanah, U., Fitriana, R., Sari, W., Yunita, Y., & Azhar, A. (2021). Antidiabetic Potential of Methanol Extract of Flamboyant (Delonix regia) Flowers. Biosaintifika Journal of Biology & Biology Education P-ISSN, 13(2), 185–194.

Ge, J., Gao, W., Cheng, W., Lu, W., Tang, J., Peng, L., Li, N., & Chen, F. (2014). Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress. European Neuropsychopharmacology, 24(1), 172–180.

Ifada, A. S., Soemardji, A. A., & Nugrahani, I. (2021). Effect of Honey on Healthy and Alloxan Diabetic Male Swiss-Webster Mice (Mus Musculus) With and Without Glibenclamide Therapy. Acta Pharmaceutica Indonesia, 46(2), 44–48.

Ighodaro, M. O., Adeosun, M. A., & Akinloye, A. O. (2018). Alloxan-induced diabetes , a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina, 1–10.

Ishak, N. A., Ismail, M., Hamid, M., Ahmad, Z., & Abd Ghafar, S. A. (2013). Antidiabetic and hypolipidemic activities of Curculigo latifolia fruit:Root extract in high fat fed diet and low dose STZ induced diabetic rats. Evidence-Based Complementary and Alternative Medicine, 1–13.

Khan, H. M. S., Murtaza, G., Usman, M., Rasool, F., Akhtar, M., & Qureshi, M. I. M. (2012). Evidence based study of side effects of drugs used in the treatment of diabetes mellitus. African Journal of Pharmacy and Pharmacology, 6(24), 1805–1808.

Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Díaz, C. (2022). Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines, 10(12), 1–47.

Lü, H., Chen, J., Li, W. L., Ren, B. R., Wu, J. L., Kang, H. Y., Zhang, H. Q., Adams, A., & Kimpe, N. De. (2009). Hypoglycemic and hypolipidemic effects of the total triterpene acid fraction from Folium Eriobotryae. Journal of Ethnopharmacology, 122(328636), 486–491.

Madhavan, V., Joshi, R., Murali, A., Yoganarasimhan, S. N., Joshi, R., Murali, A., Yoganarasimhan, S. N., Madhavan, V., Joshi, R., Murali, A., & Yoganarasimhan, S. N. (2008). Antidiabetic Activity of Curculigo Orchioides . Root Tuber. Pharmaceutical Biology, 45(1), 18–21.

Nugraheni, E. S., & Tjahjono, H. A. (2013). Extracts giving of purple eggplant (Solanum melongena L.) orally can lower blood serum levels of malondialdehide of white rat (Rattus novergicus) wistar diabetes mellitus induced by aloxan. International Journal of Pediatric Endocrinology, 2013(S1), O48.

Oliyaei, N., Moosavi-Nasab, M., Tamaddon, A., & Tanideh, N. (2021). Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Science and Nutrition, 9(7), 3521–3529.

Oshkondali, S. T. M., Mahmoudy, E., Samira, F., Alacrouk, A., Abu, K., Rashed, A., Zuhur, E., & Almesai, R. (2019). Alloxan Dose Optimization to Induce Diabetes in Albino Mice and the Determination of the Induced Diabetes Type. Saudi Journal of Medical and Pharmaceutical Sciences, 5(10), 813–816.

Osibemhe, M., Orji, B. O., Omaji, G. O., Amune, E., & Ezekiel, J. (2023). Instability of alloxan-induced diabetes and its impact on sex and thyroid hormones in male wistar rats-a pilot study. Kuwait Journal of Science, 50(1), 1–11.

Purba, H., Simanjuntak, H., & Situmorang, R. (2020). Phytochemical screening of bunga rosella (Hibiscus sabdariffa L) and antimicrobial activity test. Jurnal Pendidikan Kimia, 12(2), 70–78.

Putra, R., Achmad, A., & Rachma, H. (2017). Incidence of Potential Side Effects of Anti-Diabetes Drug Therapy in Diabetes Mellitus Patients Based on Naranjo Algorithm. Pharmaceutical Journal of Indonesia, 2(2), 45–50.

Ranjbarfard, A., Saleh, G., Abdullah, N. A. P., & Kashiani, P. (2014). Genetic diversity of lemba (Curculigo latifolia) populations in peninsular malaysia using ISSR molecular markers. Australian Journal of Crop Science, 8(1), 9–17.

Ratnaningtyas, N. I., Hernayanti, Andarwanti, S., Ekowati, N., Purwanti, E. S., & Sukmawati, D. (2018). Effects of Ganoderma lucidum Extract on Diabetic Rats. Biosaintifika Journal of Biology & Biology Education, 10(3), 642–647.

Riefflin, A., Ayyagari, U., Manley, S. E., Holman, R. R., & Levy, J. C. (2015). The effect of glibenclamide on insulin secretion at normal glucose concentrations. Diabetologia, 58(1), 43–49.

Salehi, B., Ata, A., Kumar, N., Sharopov, F., Alarcon, K., Ortega, A., & Al, E. (2019). Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9, 1–121.

Silalahi, M., Nisyawati, & Pandiangan, D. (2019). Medicinal plants used by the Batak Toba tribe in Peadundung Village, North Sumatra, Indonesia. Biodiversitas, 20(2), 510–525.

Silva, L., Fernandes, M., Lima, E., Stefano, J., Oliveira, C., & Jukemura, J. (2021). Fatty pancreas: deisease or finding. Clinics.

Susanti, R., Setiadi, E., & Peniati, E. (2019). The Effect of Aloe Vera Peel Extract on Histopathology of Rat Pancreas Induced by Alloxan. Biosaintifika Journal of Biology & Biology Education, 11(3), 311–317. https://doi.org/10.15294/biosaintifika.v11i3.20896

Yu, X. X., & Xu, C. R. (2020). Understanding generation and regeneration of pancreatic β cells from a single-cell perspective. The Company of Biologists, 147, 1–14.

Yuneldi, R. F., Saraswati, T. R., & Yuniwarti, E. Y. W. (2018). Profile of SGPT and SGOT on Male Rats (Rattus norvegicus) Hyperglycemic After Giving Insulin Leaf Extract (Tithonia diversifolia). Biosaintifika Journal of Biology & Biology Education, 10(3), 519–525.

Zabidi, N. A., Ishak, N. A., Hamid, M., & Ashari, S. E. (2019). Subcritical Water Extraction of Antioxidants from Curculigo latifolia Root. Hindawi Journal of Chemistry, 1–10.

Zhao, C., Wan, X., Zhou, S., & Cao, H. (2020). Natural Polyphenols : A Potential Therapeutic Approach to Hypoglycemia. EFood, 1(2), 107–118.

Zhu, F., Wang, J., Zhang, Y., Quan, R., Yue, Z., & Zeng, L. (2015). Curculigoside regulates proliferation , differentiation , and pro-inflammatory cytokines levels in dexamethasone-induced rat calvarial osteoblasts. Int J Clin Exp Med, 8(8), 12337–12346.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.