Antioxidant Activity and Phytochemical of Ocimum basilicum to Strengthen the Traditional Balinese Medicine System

I Nyoman Arsana(1), Ni Ketut Ayu Juliasih(2), A. A. Ayu Sauca Sunia Widyantari(3),


(1) Biology Department, Faculty of Information Technology and Science, University of Hindu Indonesia, Jl Sangalangit Tembau Penatih Denpasar Timur, Indonesia. Postcode 80237. Phone number: (0361)464800
(2) Biology Department, Faculty of Information Technology and Science, University of Hindu Indonesia, Jl Sangalangit Tembau Penatih Denpasar Timur, Indonesia. Postcode 80237. Phone number: (0361)464800
(3) Biology Department, Faculty of Information Technology and Science, University of Hindu Indonesia, Jl Sangalangit Tembau Penatih Denpasar Timur, Indonesia. Postcode 80237. Phone number: (0361)464800

Abstract

The system of traditional Balinese medicine is known as Usada. One type of plant used in Usada is basil (Ocimum basilicum L). Antioxidant activity and phytochemical of ethanol extracts of two varieties of basil, Ocimum basilicum L (var.) Bali (OcB) and Ocimum basilicum L (var.) Lombok (OcL) was investigated.  Total phenol was determined by folin-cioccalteu phenol reagent, total flavonoid by quarsetine reagent, tannin by Folin-Denis reagent, and antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method and is expressed as IC50. All of the parameters were measured by spectrophotometer. Phytochemicals were determined by Gas chromatography and mass spectrometry (GC-MS) Analysis. Morphological characters (stems, leaves, and flowers) are also observed. The results showed, in OcB obtained 92 compounds, 10 of which are important compounds that have an antioxidant effect, while in OcL 139 compound components were found, 15 of which are important compounds. Levels of phenols, flavonoids, tannins, as well as IC50 in OcB are; 3526.65 mg GAE/100g, 15841.6795 mg QE/100g, 2402.80 mg/100 g, and 24.9410 mg/L, respectively, while in OcL respectively are; 3297.71 mg GAE/100g, 13242.30 mg QE/100g, 850.71 mg/100, and 33.1105 mg/L. Conclusions, morphologically OcB and OcL showed no difference except leaf width and petiole length. The antioxidant activity of OcB is better, as well as higher levels of phenols, flavonoids, and tannins compared to OcL.

Keywords

Ocimum basilicum L; Active Compound; Antioxidant; Usada

Full Text:

PDF

References

Agustini, N. W. S., Hidhayati, N., & Oktora, B. S. (2022). Antioxidant Activity of Microalgae Extract Cosmarium sp. Acid ( ABTS ) Radical Cation Assay. 14(3), 321–331.

Ahmed, A. F. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299–305. https://doi.org/10.1016/j.fshw.2019.07.004

Akoto, C. O. (2020). Anti-Inflammatory, Antioxidant, and Anthelmintic Activities of Ocimum basilicum (Sweet Basil) Fruits. Journal of Chemistry, 2020. https://doi.org/10.1155/2020/2153534

Arsana, I. N. (2019). Keragaman Tanaman Obat dalam Lontar “Taru Pramana” dan Pemanfaatannya untuk Pengobatan Tradisional Bali. Jurnal Kajian Bali (Journal of Bali Studies), 9(1), 241. https://doi.org/10.24843/JKB.2019.v09.i01.p12

Arsana, I. N., & Suardana, A. A. K. (2020). Utilization of Three Species Ocimum in Traditional Balinese Medicine, Usadha Bali. 4th International Conference of Interreligious and Intercultural Studies, 1(1), 309–317.

Ayuob, N. N., El Wahab, M. G. A., Ali, S. S., & Abdel-Tawab, H. S. (2018). Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus. Metabolic Brain Disease, 33(3), 795–804. https://doi.org/10.1007/s11011-017-0173-3

Bajomo, E. M. (2022). Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS Journal, 26, 1–9. https://doi.org/10.1016/j.nfs.2022.01.001

Bhardwaj, M., Sali, V. K., Mani, S., & Vasanthi, H. R. (2020). Neophytadiene from Turbinaria ornata Suppresses LPS-Induced Inflammatory Response in RAW 264.7 Macrophages and Sprague Dawley Rats. Inflammation, 43(3), 937–950. https://doi.org/10.1007/s10753-020-01179-z

Carvalho, A. M. S. (2020). Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. Journal of Natural Products, 83(4), 1107–1117. https://doi.org/10.1021/acs.jnatprod.9b01116

Chira, M. (2021). Phenolic, tocopherols and squalene profiles (hplc-uv) of chemlali-sfax olive oil according to extraction procedure. Revue Roumaine de Chimie, 65(2), 179–190. https://doi.org/10.33224/rrch.2020.65.2.07

Chua, N. K. (2020). Squalene monooxygenase: a journey to the heart of cholesterol synthesis. In Progress in Lipid Research (Vol. 79). https://doi.org/10.1016/j.plipres.2020.101033

Dalawai, D. (2021). Chemical profile and antioxidant properties of Andrographis producta (C. B. Clarke) Gamble. Pharmacognosy Journal, 13(2), 475–485. https://doi.org/10.5530/pj.2021.13.60

Delgado, C. (2021). Caryophyllene oxide, the active compound isolated from leaves of Hymenaea courbaril L. (fabaceae) with antiproliferative and apoptotic effects on pc-3 androgen-independent prostate cancer cell line. Molecules, 26(20). https://doi.org/10.3390/molecules26206142

Do, T. H. (2020). Optimization of Extraction of Phenolic Compounds from Ocimum Basilicum Leaves and Evaluation of Their Antioxidant Activity. Pharmaceutical Chemistry Journal, 54(2), 162–169. https://doi.org/10.1007/s11094-020-02181-3

Dougnon, G. (2021). Essential oil from the leaves of Chromolaena odorata, and sesquiterpene caryophyllene oxide induce sedative activity in mice. Pharmaceuticals, 14(7). https://doi.org/10.3390/ph14070651

Dowlath, M. J. H. (2020). Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (L.) extracts. Pharmacognosy Journal, 12(6), 1241–1251. https://doi.org/10.5530/PJ.2020.12.173

Durrett, T. P. (2021). The tail of chlorophyll: Fates for phytol. In Journal of Biological Chemistry (Vol. 296). https://doi.org/10.1016/j.jbc.2021.100802

Egarani, G., Egarani, G. R., Kasmiyati, S., & Kristiani, E. B. E. (2020). The Antioxidant Content and Activity of Various Plant Organs of Kitolod (Isotoma longiflora). Biosaintifika: Journal of Biology & Biology Education, 12(3), 297–303. https://journal.unnes.ac.id/nju/index.php/biosaintifika/article/view/23888

Gradinariu, V., Cioanca, O., Hritcu, L., Trifan, A., Gille, E., & Hancianu, M. (2015). Comparative efficacy of Ocimum sanctum L. and Ocimum basilicum L. essential oils against amyloid beta (1–42)-induced anxiety and depression in laboratory rats. Phytochemistry Reviews, 14(4), 567–575. https://doi.org/10.1007/s11101-014-9389-6

Gutbrod, K. (2019). Phytol metabolism in plants. In Progress in Lipid Research (Vol. 74, pp. 1–17). https://doi.org/10.1016/j.plipres.2019.01.002

Islam, M. T. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121, 82–94. https://doi.org/10.1016/j.fct.2018.08.032

Karakaya, S. (2020). A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae). Journal of Essential Oil Research, 32(6), 512–525. https://doi.org/10.1080/10412905.2020.1813212

Kaurinovic, B., Popovic, M., Vlaisavljevic, S., & Trivic, S. (2011). Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts. Molecules, 16(9), 7401–7414. https://doi.org/10.3390/molecules16097401

Martínez-Beamonte, R. (2020). Could squalene be an added value to use olive by-products? In Journal of the Science of Food and Agriculture (Vol. 100, Issue 3, pp. 915–925). https://doi.org/10.1002/jsfa.10116

Masyithah, Z. (2021). A systematic study of the variables that control the synthesis of n-acyl l-lysine from hexadecanoic acid in a stirred tank reactor. ARPN Journal of Engineering and Applied Sciences, 16(17), 1720–1730. https://api.elsevier.com/content/abstract/scopus_id/85119447744

Melo, A. S. (2021). Essential oil and linalool contents in basil (Ocimum basilicum) irrigated with reclaimed water. Annals of Laparoscopic and Endoscopic Surgery, 70(5), 773–782. https://doi.org/10.2166/aqua.2021.057

Micera, M. (2020). Squalene: More than a step toward sterols. In Antioxidants (Vol. 9, Issue 8, pp. 1–14). https://doi.org/10.3390/antiox9080688

Muralidharan, A., & Dhananjayan, R. (2004). Cardiac stimulant activity of Ocimum basilicum Linn. extracts. Indian Journal of Pharmacology, 36(3), 163–166.

Nasaba, E. M. (2020). Effects of oral administration of Ocimum basilicum on goblet cell hyperplasia and upstream cytokine gene expression in allergic asthma. Revue Francaise d’Allergologie, 60(2), 64–68. https://doi.org/10.1016/j.reval.2019.02.226

Ntonga, P. A., Baldovini, N., Mouray, E., Mambu, L., Belong, P., & Grellier, P. (2014). Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. Parasite, 21. https://doi.org/10.1051/parasite/2014033

Ola, O. S. (2021). A monoterpene antioxidant, linalool, mitigates benzene-induced oxidative toxicities on hematology and liver of male rats. Egyptian Journal of Basic and Applied Sciences, 8(1), 39–53. https://doi.org/10.1080/2314808X.2021.1898141

Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144, 135–143. https://doi.org/10.1016/j.plaphy.2019.09.039

Pandey, H. K. (2022). Variation in Antioxidant Activity and Antioxidant Constituents of Ocimum basilicum Linn. with the Maturity of Plant Grown in Open Field and Inside Polyhouse Conditions. Defence Life Science Journal, 7(1), 44–51. https://doi.org/10.14429/dlsj.7.17247

Park, S. Y. (2020). Hexane extract of green tea (Camellia sinensis) leaves is an exceptionally rich source of squalene. Food Science and Biotechnology, 29(6), 769–775. https://doi.org/10.1007/s10068-019-00724-3

Reddy, L. H., & Couvreur, P. (2009). Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews, 61(15), 1412–1426. https://doi.org/10.1016/j.addr.2009.09.005

Sakthivel, R. (2019). Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis. Environmental Toxicology, 34(4), 355–363. https://doi.org/10.1002/tox.22690

Salimi, A. (2021). Linalool reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocytes. Drug and Chemical Toxicology. https://doi.org/10.1080/01480545.2021.1957563

Siahaan, A. P., Rohaeti, E., Muddathir, A. M., & Batubara, I. (2020). Antioxidant Activity of Jojoba (Simmondsia chinensis ) Seed Residue Extract. Journal of Biology &Biology Education, 12(3), 350–355.

Sujarwo, W., Keim, A. P., Savo, V., Guarrera, P. M., & Caneva, G. (2015). Ethnobotanical study of Loloh: Traditional herbal drinks from Bali (Indonesia). Journal of Ethnopharmacology, 169, 34–48. https://doi.org/10.1016/j.jep.2015.03.079

Torres, R. G. (2018). Ocimum basilicum but not Ocimum gratissimum present cytotoxic effects on human breast cancer cell line MCF-7, inducing apoptosis and triggering mTOR/Akt/p70S6K pathway. Journal of Bioenergetics and Biomembranes, 50(2), 93–105. https://doi.org/10.1007/s10863-018-9750-3

Tsujimoto, M. (1916). A highly unsaturated hydrocarbon in shark liver oil. Industrial and Engineering Chemistry, 8(10), 889–896. https://doi.org/10.1021/i500010a005

Vadivel, S. (2011). Phytochemical Studies And Antibacterial Activity Of Ocimum Basilicum. J. Ecotoxicol. Environ. Monit., 21(4), 385–388.

Wrasiati, L. P., Wirawan, I. G. P., Bagiada, N. A., & Astawa, I. N. M. (2011). Antioxidant capacity of frangipani (Plumeria alba) Powder Extract. Indonesian Journal Of Biomedical Sciences, 5(2), 1–11. https://ojs.unud.ac.id/index.php/ijbs/article/view/3830

Zhao, H. xia, Zhang, H. sheng, & Yang, S. fang. (2014). Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Science and Human Wellness, 3(3–4), 183–190. https://doi.org/10.1016/j.fshw.2014.12.005

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.