Chemical Analysis of Sea urchin Diademasetosum Gonads

Mohamad Haikal K. Djafar(1), Margaretha Solang(2), Marini Susanti Hamidun(3), Aryati Abdul(4), Syam S. Kumaji(5), La Nane(6),


(1) Department of Biology, Faculty of Mathematics and Natural Sciences, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.
(4) Department of Biology, Faculty of Mathematics and Natural Sciences, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.
(5) Department of Biology, Faculty of Mathematics and Natural Sciences, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.
(6) Departemen of Coastal Resource Management, Faculty Of Fisheries And Marine Science, UniversitasNegeriGorontalo, 96128, Gorontalo, Indonesia.

Abstract

Sea urchins Diademasetosum can be found in shallow waters. Sea urchin gonads are nutritionally valuable and capable of accumulating heavy metals. This study aims to determine the moisture content, ash, protein, fat, carbohydrate, Pb, Cd metal content and determine the Maximum Tolerable Intake (MTI) of sea urchin D. setosum gonads. Gonad samples were obtained from three coasts of Huangobotu, Botubarani and Kurenai, Kabila Bone Sub-district, Bone Bolango Regency, using a purposive sampling technique. Gonads were analyzed proximate, including moisture, ash, protein, fat and carbohydrate content. Analysis of Pb and Cd levels using an atomic absorption spectrophotometer. The results were analyzed statistically using One-Way ANOVA Test. The results showed that the average moisture, ash, protein, fat, and carbohydrate content of gonads on the coast of Huangobotu, Botubarani, and Kurenai were significantly different (p<0.005); moisture content 71.91%, 75.04%, 78.51%; ash content 1.88%, 1.15%, 2.76%; protein content 9.90%, 12.81%, 15.53%; fat content 7.33%, 3.05%, 4.84%; carbohydrate content 2.35%, 7.92%, 4.93%. Pb levels were significantly different (p<0.005) 0.063 mg/kg, 0.039 mg/kg, and 0.018 mg/kg, respectively; Cd levels were not significantly different (p>0.005) 0.020 mg/kg, 0.012 mg/kg, 0.014 mg/kg respectively. MTI Pb adults 23.8kg, 38.4kg, 83.3kg, children 5.9kg, 9.6kg, 20.8kg. MTI Cd adults 21kg, 35kg, 30kg, children 5.25kg, 8.75kg, 7.5kg. D. setosumhas potential as a source of protein and can be utilized as food by considering the MTI value.

Keywords

diadema setosum; gonads; nutritional value; metals Pb; Cd

Full Text:

PDF

References

Afifudin, I. K., Suseno, S. H., & Jacoeb, A. M. (2014). Fatty Acid and Amino Acid Profile of Sea Urchins Gonads. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 60–70.

Akerina, F. O., Nurhayati, T., & Suwandy, R. (2015). Isolasi dan Karakterisasi Senyawa Antibakteri dari Bulu Babi. Jurnal Pengolahan Hasil Perikanan Indonesia, 18'(1), 61–73. https://doi.org/10.17844/jphpi.2015.18.1.61

Al Najjar, T., Al Tawaha, M., Wahsha, M., & Abu Hilal, A. (2018). Heavy metals in the sea urchin Diadema setosum from the Gulf of Aqaba. Fresenius Environmental Bulletin, 27(6), 4149–4155.http://doi.org/10.35370/bjost.2023.5.1-04

Archana, A., & Babu, K. R. (2016). Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chemistry, 197, 597–602. https://doi.org/10.1016/j.foodchem.2015.11.003

Boukhelf, K., Dermeche, S., Chahrour, F., & Bouderbela, M. (2019). Comparative study of the metallic contamination assessment of a Paracentrotus lividus (lmck, 1816) macrobenthic community in Algerian west coast. Global Journal of Fisheries Science Volume, 1(2), 14–25.https://doi.org/10.31248/GJFS2019.009

Badan Standarisasi Nasional. (2009). SNI 7387:2009. Baltals cemalraln logalm beralt paldal palngaln. Jakarta: Badan Standarisasi Nasional.

Badan Standarisasi Nasional. (1998). SNI 01-2896-1998. Cara uji cemaran logam dalam makanan. Jakarta: Badan Standarisasi Nasional.

Camacho, C., Rocha, A. C., Barbosa, V. L., Anacleto, P., Carvalho, M. L., Rasmussen, R. R., Sloth, J. J., Almeida, C. M., Marques, A., & Nunes, M. L. (2018). Macro and trace elements in Paracentrotus lividus gonads from South West Atlantic areas. Environmental Research, 162, 297–307.https://doi.org/10.1016/j.envres.2018.01.018

Chiarelli, R., & Roccheri, M. C. (2014). Marine Invertebrates as Bioindicators of Heavy Metal Pollution. Open Journal of Metal, 4, 93–106. http://dx.doi.org/10.4236/ojmetal.2014.44011

Cuevas-Acuña, D. A., Gracia Valenzuela, M. H., Santacruz-Ortega, H. C., Valdez Melchor, R. G., & Arias-Moscoso, J. L. (2019). Sea urchin (Strongylocentrotus franciscanus) gonads chemical composition, protein and amino acid contents and morphology. Biotecnia, 21(3), 86–91. https://doi.org/10.18633/biotecnia.v21i3.1015

European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union. 2006;L364:5–24.

FAO/WHO. (2022). Evaluation of certain food additives and contaminants: ninety-first report of the Joint FAO/WHO Expert Committee on Food Additives. https://apps.who.int/iris/rest/bitstreams/1480488/retrieve

Francis, P., & Chakraborty, K. (2020). Antioxidant and anti-inflammatory cembrane-type diterpenoid from Echinoidea sea urchin Stomopneustes variolaris attenuates pro-inflammatory 5-lipoxygenase. Medicinal Chemistry Research, 29(4), 656–664. https://doi.org/10.1007/s00044-020-02511-w

Karnila, R., Iriani, D., Shaarani, S. M., Yunus, A. A., & Salma, R. (2022). Nutritional characteristics of sea urchin (Diadema setosum) in Bungus, West Sumatera Province. IOP Conference Series: Earth and Environmental Science, 1118(1), 1-5. https://doi.org/10.1088/1755-1315/1118/1/012037https://doi.org/10.1088/1755-1315/1118/1/012037

Latorre‐padilla, N., Meynard, A., Rivas, J., & Contreras‐porcia, L. (2021). Transfer of pollutants from macrocystis pyrifera to Tetrapygus niger in a highly impacted coastal zone of chile. Toxics, 9(10), 1–16. https://doi.org/10.3390/toxics9100244

Matveeva, V. A., Shulgina, L. V., Prikhodko, Y. V., Shulgin, Y. P., Madej, K., & Piekoszewski, W. (2021). Nutritional value of sea urchin roe (Strongylocentrotidae) study of composition and storage conditions. Separations, 8(10), 1–9. https://doi.org/10.3390/SEPARATIONS8100174

Mcalister, J. S., & Moran, A. L. (2012). Relationships among Egg Size , Composition , and Energy : A Comparative Study of Geminate Sea Urchins. PLoS ONE, 7(7), 1–9. https://doi.org/10.1371/journal.pone.0041599

Parra-Luna, M., Martín-Pozo, L., Hidalgo, F., & Zafra-Gómez, A. (2020). Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision. Ecological Indicators, 113, 1-9. https://doi.org/10.1016/j.ecolind.2020.106185

Pringgenies, Delianis, Indrajati, R. M., & Djunaedi, A. (2020). Study of Nutritional Contents of Sea Urchin Gonad From Drini Beach, Gunung Kidul, Yogyakarta. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 13(3), 219–227. https://doi.org/10.21107/jk.v13i3.7808

Rahman, R. A., Lah, R. A., Hussin, W. M. R. W., Idris, M. H., Asif, A. Al, & Anuar, U. N. A. S. (2023). Proximate and Mineral Composition of the Long-Spined Sea Urchin (Diadema setosum) Roe. Borneo Journal Of Sciences And Technology (BJoST), 05(01), 30–39. http://doi.org/10.35370/bjost.2023.5.1-04

Shushizadeh, M. R., Nasiri, M. B., Ameri, A. G., Ghatrami, E. R., & Tavakoli, S. (2019). Preparation of the Persian Gulf Echinometra mathaei Organic Extracts and Investigation of Their Antibacterial Activity. Jundishapur Journal of Natural Pharmaceutical Products, 14(4), 1–6. https://doi.org/10.5812/jjnpp.57093

Sinay, H., & Harijati, N. (2021). Determination of Proximate Composition of Local Corn Cultivar from Kisar Island , Southwest Maluku Regency. Biosaintifika: Journal of Biology & Biology Education, 13(3), 258–266.

Solstad, R. G., Li, C., Isaksson, J., Johansen, J., Svenson, J., Stensvåg, K., & Haug, T. (2016). Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible sea urchin Echinus esculentus have 6-br-trp post-translational modifications. PLoS ONE, 11(3), 1–25. https://doi.org/10.1371/journal.pone.0151820

Suryaningsih, K. W., Dirgayusaa, G. N. P., & Putra, I. N. G. (2020). Struktur Komunitas dan Bioakumulasi Logam Berat Timbal (Pb) pada Teripang di Pantai Tanjung Benoa, Badung, Bali. Journal Of Marine Research And Technology, 3(2), 108–115.

Thao, N. P., Luyen, B. T. T., Kim, E. J., Kang, J. Il, Kang, H. K., Cuong, N. X., Nam, N. H., Kiem, P. Van, Minh, C. Van, & Kim, Y. H. (2015). Steroidal Constituents from the Edible Sea Urchin Diadema savignyi Michelin Induce Apoptosis in Human Cancer Cells. Journal of Medicinal Food, 18(1), 45–53. https://doi.org/10.1089/jmf.2013.3105

Wulandari, D. A., & Warsito, M. F. (2022). Review: Nutritional Value and Health Benefit of Sea Urchin. Omni-Akuatika, 4, 101–111.

Yang, J., Zhao, Z., Hu, K., Zhou, C., Wang, Y., Song, S., Zhao, J., & Gong, Z. (2020). Strongylocentrotus nudus lipids induce apoptosis in HepG2 cells through the induction of oxidative stress. Food Bioscience, 36. https://doi.org/10.1016/j.fbio.2020.100621

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.