Isolation and Molecular Screening of Fungus as Agents in Cellulolytic Transformation Materials from Symbiotic Lichen

Dino Rahardiyan(1), Emma Mauren Moko(2),


(1) Agribusiness Department, Faculty of Agricultural, De La Salle Catholic University, Manado, 95000, Indonesia
(2) Biology Department, Mathematics and Natural Sciences Faculty, Manado State University, Tondano, 95618, Indonesia

Abstract

 The abundance of lignocellulosic waste makes it a potential source for advanced biomaterials through various transformation processes. Lignocellulosic biomass transformation to advanced biomaterials involves enzymes from extracellular metabolites of microorganisms capable of hydrolyzing lignocellulose. This research was to molecularly screen fungi found in symbiotes of lichen endemic to trees growing in North Minahasa (North Sulawesi) with lignocellulolytic transformation enzymes. Molecular screening was conducted from identified fungi isolates based on partial genetical analysis on the locus of Internal Transcribed Spacer (ITS) of the fungi’s ribosomal DNA. Fungi isolates screening identified Trichoderma koningiopsis (isolate HZA8 and isolate HZA6), Penicillium sumatraense (strain CBS 127365 and strain CBS 130380), Trichoderma hamatum (isolate PAN12-45 and isolate PAN12-05), Aspergillus aculeatus (strain A1.9 18S),  Aspergillus aculeatus (isolate XSD-74), Trichoderma reesei (strain S2606 and isolate 5A14).  Molecular identification and BLAST homology of potentially lignocellulolytic fungi isolates rDNA indicated that isolate KB2 had close relationship with Trichoderma reesei at 100% degree of closeness and an index of cellulolytic activity of 1.19. While isolate KB3 appeared closely related to Aspergillus aculeatus at 99.83% degree of closeness and an index of cellulolytic activity of 1.57. Therefore, the potential of developing bioprocess industries in general and in particular is most probable.

Keywords

cellulolytic; fungus; lignocellulolytic; molecular screening

Full Text:

PDF

References

Arman, Z., Sondana, G.A., Fikriyyah, N.N., Afifah, Z.N., Balqis, M., Hasanah, R., Risandi, A., Sofiana, I., Nisa, H., Ridawati, Muktiningsih, M. (2020). Screening of amylolytic and cellulolytic yeast from Dendrobium spathilingue in Bali Botanical Garden, Indonesia. AIP Conference Proceedings, 2242 (1) : 050013.

Al-Battashi, H.S., Annamalai, N., Sivakumar, N., Al-Bahry, S., Tripathi, B.N., Nguyen, Q.D., Gupta, V.K. (2019). Lignocellulosic biomass (LCB) : a potential alternative biorefinery feedstock forpolyhydroxyalkanoates production. Review in Environmental Science Biotechnology,18 :183–205. https://doi.org/ 10.1007/s11157-018-09488-4.

Cometto, A., Leavitt, S.D., Millanes, A.M., Wedin, M., Grube, M., Muggia, L. (2022). The yeast lichenospere: high diversity of basidiomycetes from the lichens Trophromella atra and Rhizoplaca melanophthalma. Fungal Biology, 126 (2022) : 587-608. https://doi.org/10.1016/ j.funbio.2022.07.004.

Elumalai, S., Agarwal, B., Runge, T. M., Sangwan, R. S. (2018). Advances in transformation of lignocellulosic biomass to carbohydrate-derived fuel precursors. Biorefining of Biomass to Biofuels. Springer, 87–116. doi:10. 1007/978-3-319-67678-4_4.

Esseen, P.-A., Ekström, M., Grafström, A., Jonsson, B. G., Palmqvist, K., Westerlund, B., & Ståhl, G. (2022). Multiple drivers of large-scale lichen decline in boreal forest canopies. Global Change Biology, 28, 3293– 3309. https://doi.org/10.1111/gcb.16128.

Hu, Y., Xu, W., Hu, S., Lian, L., Zhu, J., Shi, L., Ren, A., Zhao, M. (2020). In Ganoderma lucidum Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose. Environmental microbiology, 22(1) : 107-121. doi: 10.1111/1462-2920.14826.

Janarny, G., Gunathilake, K.D.P.P. (2020) Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatalysis and Agricultural Biotechnology, 23 : 101510. https://doi.org/10.1016/ j.bcab.2020.101510.

Kantelinen, A., Printzen, C., Poczai, P. Myllys, L. (2022). Lichen speciation is sparked by a substrate requirement shift and reproduction mode differentiation. Sci Rep 12, 11048 (2022) : 1-11. https://doi.org/10.1038/s41598-022-14970-9.

Lestari, A.S., Zulfiana, D., Zulfitri, A., Krishanti, N.P.R.A., and Kartika, T. (2018) Phylogenetic analysis of polyporous fungi collected from Batam Botanical Garden, Riau Province, Indonesia. Biosaintifika, 10 (3) : 510-518. http://dx.doi.org/10.15294/biosaintifika.v10i3.5829.

Long, T.T., Zhang, P., Yu, J., Gao, Y., Ran, X., Li, Y. (2022). Regulation of disaccharide accumulation by glucosidase inhibitors to enhance cellulase production in Trichoderma reesei. Fermentation, 8(232) : 1-15. https://doi.org/10.3390/fermentation8050232.

Maryam, Akli, K., Senjawati, M.I., Ilyas, R.A. (2022). Eco-friendly bioprocessing oil palm empty fruit bunch (OPEFB) fibers into nanocrystalline cellulose (NCC) using white-rot fungi (Tremetes versicolor) and celullase enzyme (Trichoderma resei). Journal of Fibers and Polymer Composites, 1(2) : 148-163. https://doi.org/10.55043/jfpc.v1i2.55.

Mertin, A.A., Laurence, M.H., Van Der Merwe, M., French, K., Liew, E.C.Y. (2022). The cultural seed mycobiome of two Banksia species is dominated by latent saprotrophic and multitrophic fungi. Fungal Biology, 126 (2022) : 738-745. https://doi.org/10.1016/j.funbio. 2022.09.002.

Moko, E.M., Rahardiyan, D., Rawung, L.D., Sompotan, F.A., Pontoan, K.A. (2023). Low-cost alkaline pretreatments and ultrafine grinding in nanocellulose crystal extraction from Giant Swamp Taro (Crytosperma merkusii) processing waste. Egyptian Journal of Chemistry, 66(13): 89-98. DOI: 10.21608/EJCHEM.2023.169552.7104.

Mohammed, S., Yusuf, Y.G., Mahmoud, A.B., Muhammad, I., and Huyop, F.Z. (2022) Molecular Identfication of Bacillus pumilus BY 16S rRNA from Abattoir Wastewater. Biosaintifika 14 (3): 301-307. http://dx.doi.org/ 10.15294/biosaintifika.v14i3.37319.

Morais, E.M., Silva A.A.R., Sousa, F.W.A., Azevedo, I.M.B., Silva, H.F., Santos, A.M.G., Beserra-Júnior, J.E.A., Carvalho, C.P., Eberlin, M.N., Porcari, A.M., Araújo, F.D.D.S. (2022). Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS One. 17(4): 1-19. doi: 10.1371/journal.pone.0265824.

Munfariz, R., Marina, I., Sumantri, K. (2022). Farmer’s response to the utilization of rice husk waste into briquettes. Journal of Sustainable Agribusinnes, 1 (2) :61-67.

Nafaa, M., Rizk, S.M., Aly, T.A.G.A., Rashed, M.A.S., El-Moniem, D.A., Bacha, A.B., Alonzi, M., Magdy, M. (2023). Screening and identification of the rhizophere fungal communities associated with land reclamation in Egypt. Agriculture, 13 (215) : 2-15. https://doi.org/10.3390/agriculture13010215.

Nekiunaite, L., Arntzen, M., Svensson, B., Vaaje-Kolstad, G., Abou, M.H. (2016). Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches. Biotechnology for Biofuels, 9 : 1–16. https://doi.org/10.1186/s13068-016-0604-0.

O`Donnell, K. (1993) Fusarium and its near relatives. In: Reynolds, D.R. & Taylor, J.W. (eds). The fungal holomorph: mitotic, meiotic, and pleomorphic specification in fungal systematics. CAB International, Wallingford, pp. 225-233.

Pacheco, J.C., Aguilar, J., Raya, M.C., Trapero, A,. Ricart, M.G., Brisach, C.A. (2023). Diversity of cellulolytic microorganisms associated with the subterranean termite Reticulitermes grassei. Journal of Fungi, 9 (294) : 1-22. https:// doi.org/10.3390/jof9030294.

Park, C.W., Han, S.Y., Seo, P.N., Youe, W.J., Kim, Y.S., Choi, S.K., Kim, N.H., Lee, S.H. (2019). Property comparison of thermoplastic starch reinforced by cellulose nanofibrils with different chemical compositions. BioResources, 14 (1) : 1564-1578.

Pérez, R.H., Delgado, R.S., Paredes, A.O., Delgado, A.S., Hernández, E.G., Valis, A.M., Candia, F.M. (2022). Comparing acid and enzymatic hydrolysis methods for cellulose nanocrystals (CNC) obtention from agroindustrial rice husk waste. Journal of Nanotechnology, 2022 :1-11. https://doi.org/10.1155/2022/5882113.

Pozo-Rodríguez, A., Méndez-Líter, J.A., de Eugenio, L.I., Nieto-Domínguez, M., Calviño, E., Cañada, F.J., Santana, A.G., Díez, J., Asensio, J.L., Barriuso, J., Prieto A., Martinez, M.J. (2022). A Fungal versatile GH10 endoxylanase and its glycosynthase variant : synthesis of xylooligosaccharides and glycosides of bioactive phenolic compounds. International Journal of Moleculer Sciences, 23 (1383) : 1-20. https://doi.org/10.3390/ ijms23031383.

Rahardiyan, D. (2021). Fortifying bakso (restructured meat product) with potential encapsulated functional strategies – A mini review. Food Research, 5 (1) : 17-23. https://doi.org/10.26656/fr.2017.5(1).277.

Rahardiyan, D., Moko, E.M., Tan, J.S., Lee, C.K. (2023) Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging – A review. Enzyme and Microbial Technology, 168 (110260) : 1-11. https://doi.org/10.1016/j.enzmictec.2023.110260.

Rangel, M.d.C., Mayer, F.M., Carvalho, M.d.S., Saboia, G., de Andrade, A.M. (2023). Selecting catalysts for pyrolysis of lignocellulosic biomass. Biomass, 3 : 31–63. https://doi.org/ 10.3390/biomass3010003.

Santana, A.L., Meireles, M.A.A. (2023). Valorization of Cereal Byproducts with Supercritical Technology: The Case of Corn. Processes 2023, 11 (289) : 1-20. https://doi.org/ 10.3390/pr11010289.

Shinde, R., Shahi, D.K., Mahapatra, P., Naik, M.K., Singh, C.S., Verma, S. Singh A.K. (2022). Isolation of lignocelluloses degrading microbes from soil and their screening based on qualitative analysis and enzymatic assays. Annals of Plant and Soil Research, 24 (3) :347-354. https://doi.org/10.47815/apsr.2022.10174.

Sindhu, R., Binod, P., Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass -an overview. Bioresour Technol. 199 (2016): 76-82. doi: 10.1016/j.biortech.2015.08.030.

Singh., R., Singh, B.J., Mukherjee, T.K., Kumar, V., Upadhyay, S.K. (2023) Biochemical changes during solid state fermentation of wheat crop residues by Aspergillus flavus Link and Aspergillus niger van Tieghem. Biointerface Research in Applied Chemistry, 13(3): 1-14. https://doi.org/10.33263/BRIAC133.231.

Soca-Cafre, G., Rivera-Orduna, F.N., Hidalgo-Lara, M.E., Hernandez-Rodriguez, C., Marsch, R., Flores-Cotera, L.B. (2011). Molecular phylogeny and placitaxel screening of fungal endophytes from Taxus globose. Fungal Biology, 115 (2011) : 143-156. doi:10.1016/j.funbio.2010.11.004.

Sukmawati, D., Dellanerra, D., Risandi, A. (2018). Screening the capabilities of Indonesian indigenous mold in producing cellulase enzyme. IOP Conference Series: Materials Science and Engineering, 434 (1) : p. 012125.

Tufail, T., Saeed, F., Afzaal, M., Ain, H. B. U., Gilani, S. A., Hussain, M. (2021). Wheat straw : A natural remedy against different maladies. Food Science and Nutrition, 9 : 2335–2344. doi:10.1002/fsn3.2030.

Vasiliauskienė, D., Balčiūnas. G., Boris, R., Kairytė A., Urbonavičius, J. (2023). The impact of microorganism performance of linseed oil and tung tree oil impregnated composite made of hemp shives and corn starch. Microorganisms, 11 (477) : 1-15. https://doi.org/10.3390/ microorganisms11020477.

Vieto, S., Escudero-Leyva, E., Avendaño, R., Rechnitzer, N., Barrantes-Madrigal, M.D., Conejo-Barboza, G., Herrera-Sancho, O.A., Chaverri, P., Chavarría, M. (2021). Biodeterioration and cellulolytic activity by fungi isolated from a nineteenth-century painting at the National Theatre of Costa Rica. Fungal Biology, 126 : 101–112. https://doi.org/ 10.1016/j.funbio.2021.11.001.

White, T.J., Bruns, T.D., Lee, S.B., Taylor, J.W. (1990). Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds). PCR protocols. Academic, San Diego, pp. 315--322.

Wijitkosum, S. (2023). Repurposing disposable bamboo chopsticks waste as biochar for agronomical applications. Energies, 16 (771) : 1-16. https://doi.org/10.3390/en16020771.

Yavuz, T., Tümenbatur, A. (2022) Sustainable supply chains for bioeconomy: A survey on projects and literature on agro-biomass. Toros University FEASS Journal of Social Sciences, 9 (Special Issue) : 122-144. doi: 10.54709/iisbf.1175356.

Zhang, J., He, L., Guo, C., Liu, Z., Kaliaperumal, K., Zhong, B., Jiang, Y. (2022). Evaluation of Aspergillus acualatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum. Fungal Biology, 126 (2022) : 201-212. https://doi.org/10.1016/ j.funbio.2021.12.006.

Zohri, A.E.A., Ali, M.M., Ibrahim, S.M. (2023). Evaluation of cellulases production by Aspergillus niger using response surface methodology. Egyptian Sugar Journal, 19 (2022) : 18 – 28. https://doi.org/10.21608/ esugj.2022.155979.1017.

Zorić, L.Š., Janjušević, L., Djisalov, M., Knežić, T., Vunduk, J., Milenković I., Gadjanski, I. (2023). Molecular approaches for detection of Trichoderma green mold disease in edible mushroom production. Biology, 12(299): 1-12. https://doi.org/10.3390/biology12020299.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.