The Improvement of Lipid Profiles and Glucose Resistance of Hypercholesterolemic Rats using Tempeh Flour Based-Yoghurt Complemented with Red Pitaya Peel Extract
(1) Postgraduate Program of Nutrition, Universitas Muhammadiyah Semarang, Semarang City, Central Java, Indonesia
(2) Department of Nutrition, Faculty of Medicine, Universitas Negeri Semarang, Semarang City, Central Java, Indonesia
(3) Department of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
(4) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang City, Central Java, Indonesia
Abstract
Tempeh flour is potentially a substitute material in making yoghurt that provides bioactive for improving cardiovascular health. It is also suitably combined with antioxidant sources, such as red pitaya peel extract, which is well known for inhibiting metabolic inflammation. This study aims to analyze the effectiveness of tempeh flour-based yoghurt complemented with red pitaya peel extract in improving lipid profiles and glucose tolerance in hypercholesterolemic rats. A total of 36 male Wistar rats were used and divided into six different groups: regular diet (ND) and five high-fat-diet rat groups treated with no supplementation (HFD); diary-based yoghurt with lactic acid bacteria (YBAL); commercial yoghurt (YB); tempeh flour based-yoghurt with lactic acid bacteria (SY); and tempeh flour based yoghurt complemented with red pitaya peel extract (SDS). The supplementation of each treatment group was given a dose of 3.6 ml/ KgBW/ day as a single dose for 28 days. The blood sample was collected from sinus orbitalis and then used for lipid profile, glucose, liver enzyme analysis, and statistical analysis using ANOVA. The result shows that glucose levels increased significantly in all groups, except HFD groups, and there is no significant difference between normal and yoghurt treatment groups. However, yoghurt and red pitaya peel extract supplementation significantly decrease LDL-C and increase HDL-C levels while improving liver condition during hypercholesterolemia. In conclusion, tempeh flour-based yoghurt complemented with red pitaya peel extract can improve lipid profile and liver health in hypercholesterolemia rats. Therefore, further research on metabolism pathways is needed to develop potential nutraceutical products for people with hypercholesterolemia.
Keywords
Full Text:
PDFReferences
Adisasmito, W., Amir, V., Atin, A., Megraini, A., & Kusuma, D. (2020). Geographic and socioeconomic disparity in cardiovascular risk factors in Indonesia: analysis of the Basic Health Research 2018. BMC Public Health, 20(1), 1004. https://doi.org/10.1186/s12889-020-09099-1
Afzal, U., Butt, M. S., Ashfaq, F., Bilal, A., & Suleria, H. A. R. (2020). Bioassessment of flaxseed powder and extract against hyperglycemia and hypercholesterolemia using Sprague Dawley rats. Clinical Phytoscience, 6(1), 5. https://doi.org/10.1186/s40816-020-0150-y
Al-muzafar, H. M., & Amin, K. A. (2017). Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet. Lipid in Health and Disease, 16(194), 1–10. https://doi.org/10.1186/s12944-017-0585-4
Bintari, S. H., & Parman, S. (2019). Antioxidant capacity and nutritional value of tempe yoghurt. Journal of Physics: Conference Series, 1321(3), 032048. https://doi.org/10.1088/1742-6596/1321/3/032048
Bintari, S. H., Widyastiti, N. S., Putriningtyas, N. D., Hapsari, R., & Nugraheni, K. (2017). Development and properties of tegurt, a yogurt-like tempe product. Pakistan Journal of Nutrition, 16(4). https://doi.org/10.3923/pjn.2017.221.226
Cahyati, W. H., Siyam, N., & Putriningtyas, N. D. (2021). The potential of red dragon fruit peel yogurt to improve platelet levels in heparin-induced thrombocytopenia in Wistar rats. Potravinarstvo Slovak Journal of Food Sciences, 15, 218–225. https://doi.org/10.5219/1497
Choo, K. Y., Kho, C., Ong, Y. Y., Thoo, Y. Y., Lim, R. L. H., Tan, C. P., & Ho, C. W. (2018). Studies on the storage stability of fermented red dragon fruit (Hylocereus polyrhizus) drink. Food Science and Biotechnology, 27(5), 1411–1417. https://doi.org/10.1007/s10068-018-0367-4
Chungchunlam, S., Henare, S., Ganesh, S., & Moughan, P. (2015). Dietary whey protein influences plasma satiety-related hormones and plasma amino acids in normal-weight adult women. Eur J Clin Nutr, 69, 179–186.
Cook, J. R., Kohan, A. B., & Haeusler, R. A. (2022). An Updated Perspective on the Dual-Track Model of Enterocyte Fat Metabolism. Journal of Lipid Research, 63(11), 100278. https://doi.org/10.1016/j.jlr.2022.100278
Cunha, L. F., Ongaratto, M. A., Endres, M., & Barschak, A. G. (2021). Modelling hypercholesterolaemia in rats using high cholesterol diet. International Journal of Experimental Pathology, 102(2), 74–79. https://doi.org/10.1111/iep.12387
Ditano-Vázquez, P., Torres-Peña, J. D., Galeano-Valle, F., Pérez-Caballero, A. I., Demelo-Rodríguez, P., Lopez-Miranda, J., Katsiki, N., Delgado-Lista, J., & Alvarez-Sala-Walther, L. A. (2019). The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients, 11(11), 2833. https://doi.org/10.3390/nu11112833
Eklund-Jonsson, C., Sandberg, A. S., & Larsson Alminger, M. (2006). Reduction of phytate content while preserving minerals during whole grain cereal tempe fermentation. Journal of Cereal Science, 44(2), 154–160. https://doi.org/10.1016/j.jcs.2006.05.005
Faadlilah, N., & Ardiaria, M. (2016). Efek Pemberian Seduhan Kulit Buah Naga Merah (Hylocereus polyrhizus) terhadap Kadar HDL Tikus Sprague Dawley Dislipidemia. Journal of Nutrition College, 5(4), 280–288.
Federer, W. T., & Zelen, M. (1966). Analysis of multifactor classifications with unequal numbers of observations. Biometrics, 22(3), 525–552.
Fosbøl, E., & Torp-pedersen, C. (2019). Ischaemic heart disease , infection , and treatment of infection. European Heart Journal, 0, 1–2. https://doi.org/10.1093/eurheartj/ehz383
Gracia-Rubio, I., Martín, C., Civeira, F., & Cenarro, A. (2021). SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines, 9(6), 612. https://doi.org/10.3390/biomedicines9060612
Guo, J., Li, K., Lin, Y., & Liu, Y. (2023). Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1202378
Guo, X. X., Zeng, Z., Qian, Y. Z., Qiu, J., Wang, K., Wang, Y., Ji, B.-P., & Zhou, F. (2019). Wheat Flour, Enriched with γ-Oryzanol, Phytosterol, and Ferulic Acid, Alleviates Lipid and Glucose Metabolism in High-Fat-Fructose-Fed Rats. Nutrients, 11(7), 1697. https://doi.org/10.3390/nu11071697
Hadipour, E., Taleghani, A., Tayarani‐Najaran, N., & Tayarani‐Najaran, Z. (2020). Biological effects of red beetroot and betalains: A review. Phytotherapy Research, 34(8), 1847–1867. https://doi.org/10.1002/ptr.6653
Hawkins, C. L., & Davies, M. J. (2021). Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radical Biology and Medicine, 172, 633–651. https://doi.org/10.1016/j.freeradbiomed.2021.07.007
Hussain, M. A., Al Mamun, A., Peters, S. A., Woodward, M., & Huxley, R. R. (2016). The Burden of Cardiovascular Disease Attributable to Major Modifiable Risk Factors in Indonesia. Journal of Epidemiology, 26(10), 515–521. https://doi.org/10.2188/jea.JE20150178
Hussain, T., Tan, B., Murtaza, G., Liu, G., Rahu, N., Saleem Kalhoro, M., Hussain Kalhoro, D., Adebowale, T. O., Usman Mazhar, M., Rehman, Z. ur, Martínez, Y., Akber Khan, S., & Yin, Y. (2020). Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacological Research, 152, 104629. https://doi.org/10.1016/j.phrs.2020.104629
Joshi, M., & Prabhakar, B. (2020). Phytoconstituents and pharmaco-therapeutic benefits of pitaya : A wonder fruit. Journal of Food Biochemistry, 00(e13260), 1–15. https://doi.org/10.1111/jfbc.13260
Kamanna, V. S., Ganji, S. H., & Kashyap, M. L. (2013). Recent advances in niacin and lipid metabolism. Current Opinion in Lipidology, 24(3), 239–245. https://doi.org/10.1097/MOL.0b013e3283613a68
Kaneko, H., Itoh, H., Kiriyama, H., Kamon, T., Fujiu, K., Morita, K., Michihata, N., Jo, T., Takeda, N., Morita, H., Yasunaga, H., & Komuro, I. (2021). Lipid Profile and Subsequent Cardiovascular Disease among Young Adults Aged < 50 Years. The American Journal of Cardiology, 142, 59–65. https://doi.org/10.1016/j.amjcard.2020.11.038
Khoo, H. E., He, X., Tang, Y., Li, Z., Li, C., Zeng, Y., Tang, J., & Sun, J. (2022). Betacyanins and Anthocyanins in Pulp and Peel of Red Pitaya (Hylocereus polyrhizus cv. Jindu), Inhibition of Oxidative Stress, Lipid Reducing, and Cytotoxic Effects. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.894438
Liaotrakoon, W., de Clercq, N., van Hoed, V., van de Walle, D., Lewille, B., & Dewettinck, K. (2013). Impact of Thermal Treatment on Physicochemical, Antioxidative and Rheological Properties of White-Flesh and Red-Flesh Dragon Fruit (Hylocereus spp.) Purees. Food and Bioprocess Technology, 6(2), 416–430. https://doi.org/10.1007/s11947-011-0722-4
Madadi, E., Mazloum-Ravasan, S., Yu, J. S., Ha, J. W., Hamishehkar, H., & Kim, K. H. (2020). Therapeutic Application of Betalains: A Review. Plants, 9(9), 1219. https://doi.org/10.3390/plants9091219
Madane, P., Das, A. K., Nanda, P. K., Bandyopadhyay, S., Jagtap, P., Shewalkar, A., & Maity, B. (2020). Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. Journal of Food Science and Technology, 57(4), 1449–1461. https://doi.org/10.1007/s13197-019-04180-z
Mardiana, Budiono, I., & Putriningtyas, N. D. (2020). Comparison of organoleptic, protein, lipid and flavonoid content of commercial starter and isolated culture red dragon fruit peel yogurt. Food Research, 4(3), 920–925. https://doi.org/https://doi.org/10.26656/fr.2017.4(3).380
Marsche, G., Stadler, J. T., Kargl, J., & Holzer, M. (2022). Understanding Myeloperoxidase-Induced Damage to HDL Structure and Function in the Vessel Wall: Implications for HDL-Based Therapies. Antioxidants, 11(3), 556. https://doi.org/10.3390/antiox11030556
Mofid, V., Izadi, A., Mojtahedi, S. Y., & Khedmat, L. (2019). Therapeutic and Nutritional Effects of Synbiotic Yogurts in Children and Adults : a Clinical Review. Probiotics and Antimicrobial Proteins, 1–9. https://doi.org/10.1007/s12602-019-09594-x
Nair, A., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27. https://doi.org/10.4103/0976-0105.177703
Naranjo, M. C., Millan-Linares, M. C., & Montserrat-de la Paz, S. (2020). Niacin and hyperlipidemia. In Molecular Nutrition (pp. 263–281). Elsevier. https://doi.org/10.1016/B978-0-12-811907-5.00008-7
Nelson, A. J., Sniderman, A. D., Ditmarsch, M., Dicklin, M. R., Nicholls, S. J., Davidson, M. H., & Kastelein, J. J. P. (2022). Cholesteryl Ester Transfer Protein Inhibition Reduces Major Adverse Cardiovascular Events by Lowering Apolipoprotein B Levels. International Journal of Molecular Sciences, 23(16), 9417. https://doi.org/10.3390/ijms23169417
Nishikito, D. F., Borges, A. C. A., Laurindo, L. F., Otoboni, A. M. M. B., Direito, R., Goulart, R. de A., Nicolau, C. C. T., Fiorini, A. M. R., Sinatora, R. V., & Barbalho, S. M. (2023). Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics, 15(1), 159. https://doi.org/10.3390/pharmaceutics15010159
Nongonierma, A., & FitzGerald, R. (2015). Bioactive properties of milk proteins in humans: a review. Peptides, 73, 20–34.
Nurliyana, R., Zahir, S., Suleiman, M., Aisyah, M., & Rahim, K. (2010). Antioxidant study of pulps and peels of dragon fruits : a comparative study. International Food Research Journal, 17, 367–375.
Olaniyan, M., Ozuaruoke, D., & Afolabi, T. (2017). Cholesterol Lowering Effect of Cnidoscolous aconitifolius Leave Extracts in Egg Yolk Induced Hypercholesterolemia in Rabbit. Journal of Advances in Medicine and Medical Research, 23(1), 1–6. https://doi.org/10.9734/jammr/2017/35431
Panjaitan, R. G. P., & Novitasari, N. (2021). Anti-diabetic Activity of the Red Dragon Fruit Peel (Hylocereus polyrhizus) in Ethanol Extract against Diabetic Rats. Pharmacognosy Journal, 13(5), 1079–1085. https://doi.org/10.5530/pj.2021.13.140
Pourrajab, B., Fatahi, S., Dehnad, A., Kord Varkaneh, H., & Shidfar, F. (2020). The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 30(1), 11–22. https://doi.org/10.1016/j.numecd.2019.10.001
Qanitha, A., Qalby, N., Amir, M., Uiterwaal, C. S. P. M., Henriques, J. P. S., de Mol, B. A. J. M., & Mappangara, I. (2022). Clinical Cardiology in South East Asia: Indonesian Lessons from the Present towards Improvement. Global Heart, 17(1). https://doi.org/10.5334/gh.1133
Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological Properties and Applications of Betalains. Molecules, 26(9), 2520. https://doi.org/10.3390/molecules26092520
Shen, L., Xiong, X., Zhang, D., Zekrumah, M., Hu, Y., Gu, X., Wang, C., & Zou, X. (2019). Optimization of betacyanins from agricultural by‐products using pressurized hot water extraction for antioxidant and in vitro oleic acid‐induced steatohepatitis inhibitory activity. Journal of Food Biochemistry, 43(12). https://doi.org/10.1111/jfbc.13044
Song, H., Chu, Q., Xu, D., Xu, Y., & Zheng, X. (2016a). Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 64(1), 236–244. https://doi.org/10.1021/acs.jafc.5b05177
Song, H., Chu, Q., Xu, D., Xu, Y., & Zheng, X. (2016b). Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 64(1), 236–244. https://doi.org/10.1021/acs.jafc.5b05177
Šošić-Jurjević, B., Lütjohann, D., Renko, K., Filipović, B., Radulović, N., Ajdžanović, V., Trifunović, S., Nestorović, N., Živanović, J., Manojlović Stojanoski, M., Kӧhrle, J., & Milošević, V. (2019). The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. The Journal of Steroid Biochemistry and Molecular Biology, 190, 1–10. https://doi.org/10.1016/j.jsbmb.2019.03.009
Susanto, H., Ningrum, A. M., Noer, E. R., Muniroh, M., & Afifah, D. N. (2023). Differences effect of tempeh milk and tempeh yogurt on oxidative stress in maximal exercise. Jurnal Aisyah : Jurnal Ilmu Kesehatan, 8(1), 39–42. https://doi.org/10.30604/jika.v8i1.1561
Tan, Huang, Luo, Liu, Cheng, Li, Xia, Li, Tang, Fang, Pan, Ou, Cheng, & Chen. (2019a). Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules, 24(15), 2809. https://doi.org/10.3390/molecules24152809
Tan, Huang, Luo, Liu, Cheng, Li, Xia, Li, Tang, Fang, Pan, Ou, Cheng, & Chen. (2019b). Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules, 24(15), 2809. https://doi.org/10.3390/molecules24152809
Wahyu, H. T., Anggi, V., Afrizal, A., Magfirah, M., & tandi, J. (2022). Potential Test of Soy-yamghurt against Antidiabetic in male white rats (Rattus norvegicus) Streptozotocin induced. Research Journal of Pharmacy and Technology, 4139–4143. https://doi.org/10.52711/0974-360X.2022.00695
Watanabe, N., Hara, Y., Tashiro, H., & Aoki, H. (2023). Antioxidant activity of tempe fermented with three different Rhizopus species. Food Science and Technology Research, 29(2), FSTR-D-22-00167. https://doi.org/10.3136/fstr.FSTR-D-22-00167
Wiwik Werdiningsih, N., (2017). Efek Pemberian Kulit Buah Naga Merah (Hylocereus Polyrhizus) Terhadap Perubahan Profil Lipid Tikus Putih (Rattus Norvegicus) Jantan Yang Diberi Diet Tinggi Lemak (Doctoral Dissertation, Universitas Airlangga).
Wihastuti, T. A., Sargowo, D., Heriansyah, T., Aziza, Y. E., Puspitarini, D., Iwana, A. N., & Evitasari, L. A. (2015). The reduction of aorta histopathological images through inhibition of reactive oxygen species formation in hypercholesterolemia rattus norvegicus treated with polysaccharide peptide of Ganoderma lucidum. Iranian Journal of Basic Medical Sciences, 18(5), 514–519. https://doi.org/10.22038/ijbms.2015.4416
Yamagata, K. (2019). Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Current Pharmaceutical Design, 25(22), 2443–2458. https://doi.org/10.2174/1381612825666190722100504
Yamagata, K., & Yamori, Y. (2021). Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules, 26(19), 5863. https://doi.org/10.3390/molecules26195863
Yang, J. H., Thu, T., Tran, T., & Le, V. V. M. (2020). Hypolipidemic and Hepatoprotective Effects of High-Polydextrose Snack Food on Swiss Albino Mice. 2020.
Ye, Y.-B., He, K.-Y., Li, W.-L., Zhuo, S.-Y., Chen, Y.-M., Lu, W., Wu, S.-L., Liu, J., Li, Y.-B., & Zeng, F.-F. (2021). Effects of daidzein and genistein on markers of cardiovascular disease risk among women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial. Food & Function, 12(17), 7997–8006. https://doi.org/10.1039/D1FO00712B
Yu, Y., Raka, F., & Adeli, K. (2019). The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. Journal of Clinical Medicine, 8(12), 2227. https://doi.org/10.3390/jcm8122227
Zakaria, S. I., Alfian, S. D., & Zakiyah, N. (2022). Determinants of Cardiovascular Diseases in the Elderly Population in Indonesia: Evidence from Population-Based Indonesian Family Life Survey (IFLS). Vascular Health and Risk Management, Volume 18, 905–914. https://doi.org/10.2147/VHRM.S390734
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.