Metagenomic Analysis of Microbial Communities from Coal Waste
(1) Biomedical Science Study Program, Faculty of Health, Universitas IVET, Semarang, Central Java, Indonesia 50233
(2) Biomedical Science Study Program, Faculty of Health, Universitas IVET, Semarang, Central Java, Indonesia 50233
(3) Biomedical Science Study Program, Faculty of Health, Universitas IVET, Semarang, Central Java, Indonesia 50233
(4) Biomedical Science Study Program, Faculty of Health, Universitas IVET, Semarang, Central Java, Indonesia 50233
(5) Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Fukuoka, Japan 808-0135
Abstract
Coal waste contains few macro-and micronutrients, which makes it less likely to become a growth site for microorganisms. One way to screen coal waste resources is to identify the diversity of microbes in them to study the relationship between these microbial communities in contributing to improving environmental pollution using metagenomics to determine microbial diversity. The purpose of this research is to study the diversity of microorganisms in areas contaminated with heavy metals using a metagenomic method. This study was performed using next-generation sequencing techniques, including DNA extraction, 16S rRNA amplification, and gene sequencing analysis. The results of this research found that the 10 most commonly found species were Baekduia soli, Nocardiodes iriomotensis, Nocardioides mesophilus, Nocardioides pakistanensis, Propionibacterium cyclohexanicum, Solirubrobacter ginsenosidimutans, Gemmatirosa kalamazoonensis, Roseisolibacter agri, Kosakonia saccahri, and Dickeya fangzhongdai. Based on this research, it can be concluded that most of the microbial communities from coal waste are dominated by the phylum Actinobaceria. The results of this study can be used as an adaptive microbial germplasm for industrial waste management strategies.
Keywords
Full Text:
PDFReferences
Aggarwala, V., Liang, G., & Bushman, F. D. (2017). Viral communities of the human gut: Metagenomic analysis of composition and dynamics. Mobile DNA, 8(1), 1–10. https://doi.org/10.1186/s13100-017-0095-y
Ajani, O. O., Iyaye, K. T., & Ademosun, O. T. (2022). Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC Advances, 12(29), 18594–18614. https://doi.org/10.1039/d2ra02896d
Akimbekov, N. S., Digel, I., Tastambek, K. T., Marat, A. K., Turaliyeva, M. A., & Kaiyrmanova, G. K. (2022). Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. Biology, 11(9), 1–47. https://doi.org/10.3390/biology11091306
Alič, Š., Pédron, J., Dreo, T., & Van Gijsegem, F. (2019). Genomic characterisation of the new Dickeya fangzhongdai species regrouping plant pathogens and environmental isolates. BMC Genomics, 20(1), 1–18. https://doi.org/10.1186/s12864-018-5332-3
Alves, L. D. F., Westmann, C. A., Lovate, G. L., De Siqueira, G. M. V., Borelli, T. C., & Guazzaroni, M. E. (2018). Metagenomic Approaches for Understanding New Concepts in Microbial Science. International Journal of Genomics, 2018. https://doi.org/10.1155/2018/2312987
Amin, A., Ahmed, I., Habib, N., Abbas, S., Xiao, M., Hozzein, W. N., & Li, W. J. (2016). Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 109(8), 1101–1109. https://doi.org/10.1007/s10482-016-0711-8
An, D. S., Siddiqi, M. Z., Kim, K. H., Yu, H. S., & Im, W. T. (2018). Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov. Journal of Microbiology, 56(1), 24–29. https://doi.org/10.1007/s12275-018-7107-6
An, D. S., Wang, L., Kim, M. S., Bae, H. M., Lee, S. T., & Im, W. T. (2011). Solirubrobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field. International Journal of Systematic and Evolutionary Microbiology, 61(11), 2606–2609. https://doi.org/10.1099/ijs.0.028431-0
Ayilara, M. S., & Babalola, O. O. (2023). Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy, 5(May), 1–15. https://doi.org/10.3389/fagro.2023.1183691
Bahram, M., & Anslan, S. (2019). Brief Report Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. 11, 487–494. https://doi.org/10.1111/1758-2229.12684
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1–22.
Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2020). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34(100622), 1–11. https://doi.org/10.1016/j.nmni.2019.100622
Boonsrangsom, T., Fuenghoi, C., Premjet, D., Suvittawat, K., Ratanasut, K., & Sujipuli, K. (2023). Genetic relationships and genome verification of Thai banana cultivars using Random Amplification of Polymorphic DNA (RAPD) markers. Biodiversitas, 24(7), 3758–3765. https://doi.org/10.13057/biodiv/d240713
Bronnec, V., Eilers, H., Jahns, A. C., Omer, H., & Alexeyev, O. A. (2022). Propionibacterium (Cutibacterium) granulosum Extracellular DNase BmdE Targeting Propionibacterium (Cutibacterium) acnes Biofilm Matrix, a Novel Inter-Species Competition Mechanism. Frontiers in Cellular and Infection Microbiology, 11(January), 1–7. https://doi.org/10.3389/fcimb.2021.809792
Chen, M., Zhu, B., Lin, L., Yang, L., Li, Y., & An, Q. (2015). Complete genome sequence of Kosakonia sacchari type strain SP1T. Standards in Genomic Sciences, 9(3), 1311–1318. https://doi.org/10.4056/sigs.5779977
Coster, W. De, Hert, S. D., Schultz, D. T., Cruts, M., & Broeckhoven, C. Van. (2018). Sequence analysis NanoPack : visualizing and processing long-read sequencing data. 34(March), 2666–2669. https://doi.org/10.1093/bioinformatics/bty149
DeBruyn, J. M., Fawaz, M. N., Peacock, A. D., Dunlap, J. R., Nixon, L. T., Cooper, K. E., & Radosevich, M. (2013). Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. Journal of General and Applied Microbiology, 59(4), 305–312. https://doi.org/10.2323/jgam.59.305
Jacob, J. H., Hussein, E. I., Shakhatreh, M. A. K., & Cornelison, C. T. (2017). Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing. MicrobiologyOpen, 6(5), 1–6. https://doi.org/10.1002/mbo3.500
Jeantet, R., & Jan, G. (2021). Improving the drying of Propionibacterium freudenreichii starter cultures. Applied Microbiology and Biotechnology, 105(9), 3485–3494. https://doi.org/10.1007/s00253-021-11273-3
Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Isolation, Identification, and Characterization of Polystyrene-Degrading Bacteria From the Gut of Galleria Mellonella (Lepidoptera: Pyralidae) Larvae. Frontiers in Bioengineering and Biotechnology, 9(August), 1–9. https://doi.org/10.3389/fbioe.2021.736062
Kapahi, M., & Sachdeva, S. (2019). Bioremediation Options for Heavy Metal Pollution. J Health Pollution, 9(24), 1–20.
Kazi Madina Maraz, & Ruhul Amin Khan. (2021). An overview on impact and application of microorganisms on human health, medicine and environment. GSC Biological and Pharmaceutical Sciences, 16(1), 089–104. https://doi.org/10.30574/gscbps.2021.16.1.0200
Lee, S. D., & Lee, D. W. (2014). Nocardioides rubroscoriae sp. nov., isolated from volcanic ash. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 105(6), 1017–1023. https://doi.org/10.1007/s10482-014-0161-0
Lin, S. Y., Wen, C. Z., Hameed, A., Liu, Y. C., Hsu, Y. H., Shen, F. T., Lai, W. A., & Young, C. C. (2015). Nocardioides echinoideorum sp. Nov, isolated from sea urchins (tripneustes gratilla). International Journal of Systematic and Evolutionary Microbiology, 65(6), 1953–1958. https://doi.org/10.1099/ijs.0.000206
Mohammed, S., Yusuf, Y. G., Mahmoud, A. B., & Muhammad, I. (2022). Molecular Identfication of Bacillus pumilus BY 16S rRNA from Abattoir Wastewater. Biosaintifika: Journal of Biology & Biology Education, 14(3), 301–307.
Mondal, H., & Thomas, J. (2022). Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Antibiotics, 11(11), 1–17. https://doi.org/10.3390/antibiotics11111546
Mujakić, I., Piwosz, K., & Koblížek, M. (2022). Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms, 10(1), 1–17. https://doi.org/10.3390/microorganisms10010151
Nygaard, A. B., Tunsjø, H. S., Meisal, R., & Charnock, C. (2020). A preliminary study on the potential of Nanopore MinION and Illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Scientific Reports, 10(1), 3209. https://doi.org/10.1038/s41598-020-59771-0
Pascual, J., Foesel, B. U., Geppert, A., Huber, K. J., Boedeker, C., Luckner, M., Wanner, G., & Overmann, J. (2018). Roseisolibacter agri gen. Nov., sp. nov., a novel slow-growing member of the under-represented phylum gemmatimonadetes. International Journal of Systematic and Evolutionary Microbiology, 68(4), 1028–1036. https://doi.org/10.1099/ijsem.0.002619
Permatasari, R., Sodri, A., & Agustina, H. (2023). Utilization of Fly Ash Waste in the Cement Industry and its Environmental Impact : A Review. Jurnal Penelitian Pendidikan IPA, 9(9), 569–579. https://doi.org/10.29303/jppipa.v9i9.4504
Prayogo, F. A., Budiharjo, A., Kusumaningrum, H. P., Wijanarka, W., Suprihadi, A., & Nurhayati, N. (2020). Metagenomic applications in exploration and development of novel enzymes from nature: a review. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00043-9
Prihartin, I., Ismail, A. S., Sukorini, H., Nursandi, F., Zakia, A., & Farahdina, F. A. R. (2023). Identification of bacterial isolates of Tumpang and Bumiasri (East Java, Indonesia) using 16S rRNA gene sequencing and screening of their active compounds as a biofertilizer. Biodiversitas, 24(6), 3338–3343. https://doi.org/10.13057/biodiv/d240629
Singh, S., & Hiranmai, R. Y. (2021). Monitoring and molecular characterization of bacterial species in heavy metals contaminated roadside soil of selected region along NH 8A, Gujarat. Heliyon, 7(11), e08284. https://doi.org/10.1016/j.heliyon.2021.e08284
Song, D., Huo, T., Zhang, Z., Cheng, L., Wang, L., Ming, K., Liu, H., Li, M., & Du, X. (2022). Metagenomic Analysis Reveals the Response of Microbial Communities and Their Functions in Lake Sediment to Environmental Factors. International Journal of Environmental Research and Public Health, 19(24). https://doi.org/10.3390/ijerph192416870
Tian, Y., Zhao, Y., Yuan, X., Yi, J., Fan, J., Xu, Z., Hu, B., De Boer, S. H., & Li, X. (2016). Dickeya fangzhongdai sp. nov., a plantpathogenic bacterium isolated from pear trees (Pyrus pyrifolia). International Journal of Systematic and Evolutionary Microbiology, 66(8), 2831–2835. https://doi.org/10.1099/ijsem.0.001060
Tripathi, M., Singh, D., Vikram, S., Singh, V., & Kumar, S. (2018). Metagenomic Approach towards Bioprospection of Novel Biomolecule(s) and Environmental Bioremediation. Annual Research & Review in Biology, 22(2), 1–12. https://doi.org/10.9734/arrb/2018/38385
Ullah, A., Kassim, A., Abbil, A., Matusin, S., Rashid, A. S. A., Yunus, N. Z. M., & Abuelgasim, R. (2020). Evaluation of Coal Bottom Ash Properties and Its Applicability as Engineering Material. IOP Conference Series: Earth and Environmental Science, 498(1), 1–6. https://doi.org/10.1088/1755-1315/498/1/012044
Wang, P., Kong, X., Chen, H., Xiao, Y., Liu, H., Li, X., Zhang, Z., Tan, X., Wang, D., Jin, D., Deng, Y., & Cernava, T. (2021). Exploration of Intrinsic Microbial Community Modulators in the Rice Endosphere Indicates a Key Role of Distinct Bacterial Taxa Across Different Cultivars. Frontiers in Microbiology, 12(February), 1–12. https://doi.org/10.3389/fmicb.2021.629852
Wibowo, H., Riani, E., & Kurniawan, B. (2018). Analysis of Fly Ash Disposal Problem in Coal-Fired Steam Power Plant: Study At Pltu Xyz, Indonesia. Journal of Industrial Pollution …, 34(1), 1976–1983. https://www.icontrolpollution.com/articles/analysis-of-fly-ash-disposal-problem-in-coalfired-steampower-plant-study-at-pltu-xyz-indonesia.php?aid=87095
Yamamura, H., Ohkubo, S. ya, Nakagawa, Y., Ishida, Y., Hamada, M., Otoguro, M., Tamura, T., & Hayakawa, M. (2011). Nocardioides iriomotensis sp. nov., an actinobacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 61(9), 2205–2209. https://doi.org/10.1099/ijs.0.025080-0
Zhu, B., Zhou, Q., Lin, L., Hu, C., Shen, P., Yang, L., An, Q., Xie, G., & Li, Y. (2013). Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.). International Journal of Systematic and Evolutionary Microbiology, 63(PART7), 2577–2582. https://doi.org/10.1099/ijs.0.045500-0
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.