Tea Fungus Beverages from Torch Ginger (Etlingera elatior): Total microbial, Physicochemical, and Antioxidant Activity

Nur Fitrianto(1), Fajar Husen(2), Siti Samiyarsih(3), Nuniek Ina Ratnaningtyas(4), Lusia Seti Palindung(5), Enur Azizah(6),


(1) Research Center for Food Technology and Processing, National Research and Innovation Agency, Gunungkidul, Yogyakarta, Indonesia 55861
(2) Department of Medical Laboratory of Technology, Bina Cipta Husada College of Health Science, Purwokerto, Central Java, Indonesia, 53144
(3) Faculty of Biology, Jenderal Soedirman University, Purwokerto, Central Java, Indonesia, 53122
(4) Faculty of Biology, Jenderal Soedirman University, Purwokerto, Central Java, Indonesia, 53122
(5) Research Center for Food Technology and Processing, National Research and Innovation Agency, Gunungkidul, Yogyakarta, Indonesia 55861
(6) Department of Biology, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, 35145, Indonesia

Abstract

Functional beverages are needed to maintain health and fitness as a part of the instant lifestyle and degenerative diseases. The scientific findings on torch ginger (Etlingera elatior) flower (TGF) as a tea fungus beverage (Kombucha) are still limited. This research evaluated total microbes, physicochemical properties, and antioxidant activity 7 and 14 days after fermentation (daf) of TGF kombuchas. In addition, TGF in variant 0% (TGF0), 5% (TGF5), 10% (TGF10), and 15% (TGF15) are fermented with 3% of SCOBY, 20% culture, 1% green tea, and 10% sucrose. The antioxidant activities of TGF kombuchas were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis 3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) assay—the phenolic and flavonoid content using Folin-Ciocalteu method-gallic acid equivalent, and quercetin acid equivalent, respectively. The result showed that the fermentation time (p<0.05) was affected by the properties of TGF kombuchas. Total microbes, physicochemical properties (pH, acidity, cellulose pellicle weight, phenolic, flavonoid content), and antioxidant activity were higher in 14 than in 7 days. Total soluble solid and total yeast count showed lower values in 14 days. The increase in total bacteria count, TGF15%, led to the highest increasing density from 8.08 ± 0.02Log CFU/mL on seven daf to 13.34 ± 0.04Log CFU/mL on 14 daf. The TGF 10% and 15% kombuchas in 14 dafs showed abundance in phenolic and flavonoid content, 121.45±1.07mg GAE/mL and 1.70±0.04 mg QAE/mL, respectively. During 14 daf and TGF 10%, the Kombucha of torch ginger flower demonstrated high antioxidant activity at 85.92±0.07% DDPH and 63.05±0.97ABTS. It is expected to aid future research into developing functional kombucha beverages.

Keywords

antioxidant; Kombucha; microbial; physicochemical

Full Text:

PDF

References

Ahmed, R. F., Hikal, M. S., & Abou-Taleb, K. A. 2020. Biological, chemical, and antioxidant activities of different types of Kombucha. Annals of Agricultural Sciences, 65(1), 35-41.

Barbosa, E. L., Netto, M. C., Junior, L. B., de Moura, L. F., Brasil, G. A., Bertolazi, A. A., ... & Vasconcelos, C. M. 2022. Kombucha fermentation in blueberry (Vaccinium myrtillus) beverage and its in vivo gastroprotective effect: Preliminary study. Future Foods, 5, 100129.

Bishop, P., Pitts, E. R., Budner, D., & Thompson-Witrick, K. A. (2022). Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chemistry Advances, 1, Article 100025 October 2021. 10.1016/j.focha.2022.100025

Bueno, F., Chouljenko, A., Sathivel, S., 2021. Development of coffee kombucha containing lactobacillus rhamnosus and lactobacillus casei: gastrointestinal simulations and DNA microbial analysis. LWT Food Sci. Technol. 142, 110980

Candra, A., Prasetya, B.E., 2023. Antimicrobial activity and vitamin C analysis of soursop leaves (Annona et al.) kombucha enriched with honey. In: AIP Conference Proceedings. AIP Publishing, 020002.

Candra, A., Prasetyo, B. E., & Darge, H. F. 2023. Honey utilization in soursop leaves (Annona muricata) kombucha: Physicochemical, cytotoxicity, and antimicrobial activity. Biocatalysis and Agricultural Biotechnology, 52, 102815.

Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 220: 63–72. [CrossRef]

Diez-Ozaeta, I., & Astiazaran, O. J. 2022. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. International Journal of Food Microbiology, 377, 109783.

Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160: 346–356. [CrossRef] [PubMed]

Jakubczyk, K., Kałduńska, J., Kochman, J., & Janda, K.2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black, and red tea. Antioxidants, 9(5). 10.3390/antiox9050447.

Jayabalan R, Radomir, V.M, Eva, S.L, Jasmina, S.V, and Muthuswamy, S. 2014. A Review on Kombucha Tea–Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus Comprehensive Reviews in Food Science and Food Safety 13 pp 538 – 550.

Li, Y., Nguyen, T. T. H., Jin, J., Lim, J., Lee, J., Piao, M., Mok, I. K., & Kim, D. (2021). Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria (Lactobacillus plantarum). Food Science and Biotechnology, 30(4), 555–564.

Marco, M.L., Sanders, M.E., G¨ anzle, M., Arrieta, M.C., Cotter, P.D., De Vuyst, L., Hill, C., Holzapfel, W., Lebeer, S., Merenstein, D., Reid, G., Wolfe, B.E., Hutkins, R. 2021. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18: 196–208.

Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38: pp. 171–178.

Muhamad, N.A., Noordin, L., Bakar, N.H.A.N., & Ahmad, W.A.N.W. 2020. Evaluation of antidiabetic activities of Etlingera elatior flower aqueous extract in vitro and in vivo. Journal of Applied Pharmaceutical Science, 10, 043–051.

Naufalin, R., Erminawati, E., & Wibowo, D.N. 2021. Antioxidant activities, physicochemical properties, and sensory characteristics of kecombrang tea (Etlingera elatior) as a functional drink. IOP Conference Series: Earth and Environmental Science, 653, 1–8.

Nyhan, L. M., Lynch, K. M., Sahin, A. W., & Arendt, E. K. (2022). Advances in kombucha tea fermentation: A review. Applied Microbiology, 2(1), 73–101.

Prasedya, E. S., Frediansyah, A., Martyasari, N. W. R., Ilhami, B. K., Abidin, A. S., Padmi, H., ... & Sunarwidhi, A. L. 2021. Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Scientific reports, 11(1), 17876.

Samiyarsih S, Fitrianto N, Proklamasiningsih E, Juwarno, Muljowati JS. 2020. Phytochemical diversity and antimicrobial properties of methanol extract of several cultivars of Catharanthus roseus using GC-MS. Biodiversitas 21: 1332-1344.

Takahashi, J.A., Rezende, F.A., Moura, M.A., Dominguete, L. C., & Sande, D. (2020). Edible flowers: Bioactive profile and its potential to be used in food development. Food Research International, 129, 108868. doi:10.1016/j. foodies.2019.108868

Tapias, Y.A.R., Di Monte, M.V., Peltzer, M.A., Salvay, A.G., 2022. Bacterial cellulose film production by Kombucha symbiotic community cultured on different herbal infusions. Food Chem. 372, 131346.

Treviño-Garza, M. Z., Guerrero-Medina, A. S., González-Sánchez, R. A., García-Gómez, C., Guzmán-Velasco, A., Báez-González, J. G., & Márquez-Reyes, J. M. 2020. Production of microbial cellulose films from green tea (Camellia Sinensis) kombucha with various carbon sources. Coatings, 10(11), 1132.

Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S., & Taillandier, P. 2019. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory, and antioxidant properties in kombucha tea extracts. Process Biochemistry: 83. Elsevier Ltd. 10.1016/j.procbio.2019.05.004

Yikmiş, S., & Tuggum, S. (2019). Evaluation of microbiological, physicochemical, and sensorial properties of purple basil kombucha beverage. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1321-1327.

Zubaidah, E., Dea, E.C., Sujuti, H.2022. Physicochemical and microbiological characteristics of Kombucha based on various concentrations of Javanese turmeric (Curcuma xanthorrhiza). Biocatal. Agric. Biotechnol. 44, 102467.

Zubaidah, E., Dewantari, F. J., Novitasari, F. R., Srianta, I., & Blanc, P. J. 2018. Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198-203.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.