Growth Response of Sorghum bicolor (L.) Moench. Cultivars to Trivalent Chromium Stress
(1) Graduate Program Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia
(2) Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia
(3) Faculty of Agriculture, Gadjah Mada University, Yogyakarta, Indonesia
(4) Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia
(5) Faculty of Biology, University of Kristen Satya Wacana, Salatiga, Indonesia
(6) Faculty of Biology, University of Kristen Satya Wacana, Salatiga, Indonesia
Abstract
One of heavy metal pollutants in the soil that can be absorbed by the sorghum is chromium (Cr). The study was conducted to determine the growth response of Cr3+ stress of sorghum cultivars. Two chemical compounds Cr3+ and 3 level concentrations were exposed to sorghum cultivars. The research was conducted in two separate experiments i.e. during seed germination and early seedling development stages. The parameters measured were radicle/root length, seedling length, fresh weight, dry weight, and stress tolerance index (STI) value. The results showed that Cr3+ either in form of CrCl3 or KCr(SO4)2 significantly reduced the seedling growth of sorghum cultivars. The growth responses of sorghum cultivars toward Cr3+ stress showed differences both on stage of the germination and early seedling. Based on the average of STI value, four sorghum cultivars (Badik, Keris, Keris M3 and Numbu) were classified as very strong tolerant, 4 cultivars (Hegari, Mandau, Sangkur and Gambela) were categorized as moderate tolerant, two cultivars (UPCA and Selayer) were weak tolerant, and 2 cultivars (Kawali and Batari) were sensitive ones, under stress condition of Cr3+.The results of this study are expected to provide the scientific basis of the physiological and tolerance responses of sorghum cultivars toward Cr3+ stress condition.
How to Cite
Kasmiyati, S., Santosa, S., Priyambada, I., Dewi, K., Sucahyo, S., & Sandradewi, R. (2016). Growth Response of Sorghum bicolor (L.) Moench. Cultivars to Trivalent Chromium Stress. Biosaintifika: Journal of Biology & Biology Education, 8(1), 71-84.
Keywords
Full Text:
PDFReferences
Francis, M. (2000). Background report on fertilizer use, contaminants and regulations. Washington, D.C: Environmental Protection Agent. Battelle 505 King Avenue. 406p.
Akinci, I. E. & Akinci, S. (2010). Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr. J. Biotechnol, 9(29), 4589-4594.
Anderson, R. A. (1997). Chromium as an essential nutrient for humans. Regul. Toxicol. Pharmacol, 26(1), 35-41
Agustina, K., Sopandie, D., Trikoesoemaningtyas, & Wirnas, D. (2010). Uji daya adaptasi sorgum pada lahan kering masam terhadap toksisitas aluminium dan defisien fosfor (Sorghum bicolor, L. Moench). Prosiding Pekan Serealia Nasional.
Bagci, S. A, & Yilmaz, H. E. (2003). Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turk. J. Agric. For, 27(5), 253-260.
Bibi, H., Sadaqat, A., Tahir, M. H. N., & Akram, H. M. (2012). Screening of sorghum (Sorghum bicolor var Moench) for drought tolerance at seedling stage in polyethylene glycol. J. Anim. Plant Sci, 22(3), 671-678.
Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707-1719.
Datta, R., & Sarkar, D. (2004). Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: an overview. Environ. Geosci, 11(2), 53-63.
Diwan, H., Khan, I., Ahmad, A., & Iqbal, M. (2010). Induction of phytochelatins and antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatment. Plant Growth Regul, 61(1), 97-107.
El-Hendawy, S. E., Hu, Y., Yakout, G. M., Awad, A. M., Hafiz, S. E., & Schmidhalter, U. (2005).. Evaluating salt tolerance of wheat genotypes using multiple parameters. Europ. J. Agronomy,. 22(3), 243-253.
Gardea–Torresday, J. L., Peralta, V. J. R., Montes, M., de la Rosa, G., & Corral–Diaz, B. (2004). Bioaccumulation of cadmium chromium and copper by Convolvulus arvensis L: Impact on plant growth and uptake of nutritional elements. Bioresour. Technol, 92(3), 229-235.
Gyawali, R., & Lekhak, H. D. (2006). Chromium tolerance of rice (Oryza sativa) cultivar from Kathmandu Valley. Scientific World, 4(4), 102-106.
Hefny, M. M., Metwali, E. M. R., & Mohamed, A. I. 2013. Assessment of genetic diversity of sorghum (Sorghum bicolor L. Moench) genotypes under saline irrigation water based on some selection indices. Aust. J. Crop Sci, 7(12), 1935-1945.
Henriques, F. S. (2010). Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium. Biol. Plant, 54(3), 583-586.
Hagemeyer, J. (1999). Structural and ultrastructural changes in heavy metal exposed plants. In: Prasad, M.N.V., & Hagemeyer, J. (Eds). Heavy metal stresses in plants. From molecules to ecosystems. Springer, Berlin. pp: 157-181.
Karuppanapandian, T., Sinha, P.B., Haniya, A. M. K., & Manoharan, K. (2006). Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves. J. Plant Biol, 49(6), 440-447.
Kasmiyati, S., Santosa, Priyambada, I. D., Dewi, K., & Sandradewi, R. (2015). Perkecambahan biji dan pertumbuhan kecambah varietas sorgum (Sorghum bicolor (L.) Moench.) pada cekaman krom heksavalen. Bioma, 17(1), 41-54.
Katz S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium. VCH Publ, New York.
Kim, J. G., Dixon, J. B., Chusuei, C. C., & Deng, Y. (2002). Oxidation of chromium (III) to (VI) by manganese oxides. Soil Sci. Soc. Am. J, 66(1), 306-315.
Liu, D., & Kottke, I. (2003). Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biol. Toxicol,19(5), 299-311.
Liu, J., Duan, C. Q., Zhang, X. H., Zhu, Y. N, & Hu, C. (2011). Characteristics of chromium(III) uptake in hyperaccumulator Leersia hexandra Swartz. Environ. Exp. Bot, 74, 122-126.
Menezes, C. B., Ticona-Benavente, C. A., Tardin, F. D., Cardoso, M. J., Bastos, E. A., Nogueira, D. W., Portugal, A. F., Santos, C. V., & Schaffert, R. E. (2014). Selection indices to identify drought-tolerant grain sorghum cultivars. Genet. Mol. Res, 13(4), 9817-9827.
Mei, B., Puryear, J. D., & Newton, R. J. (2002). Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil, 247(2), 223-231.
Naim, A. M. E., Mohammed, K. E., Ibrahim, E. A., & Suleiman, N. N. (2012). Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum bicolor (L.) Moench.) cultivars. Science and Technology, 2(2), 16-20.
Njoku & Nweeze. (2009). Physiochemical Influence of soil minerals on the organic reduction of soil chromium. Leb. Sci. J, 10(1), 87-98.
Peralta, J. R., Gardea Torresdey, J. L., Tiemann, K. J., Gomes, E., Arteaga, S., & Parsons, J. G. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol, 66(6), 727-734.
Purwani, R. D., & Marjani. (2009). Evaluasi ketahanan plasma nutfah kenaf terhadap cekaman Fe pada pH masam. Buletin Penelitian Tanaman Tembakau dan Serat, 1(1), 28-40.
Rani, C. R., Reema, C., Alka, S., & Singh P. K. (2012). Salt tolerance of Sorghum bicolor cultivars during germination and seedling growth. Res. J. Recent. Sci, 1(3), 1-10.
Revathi, K., Haribabu, T. E., & Sudha, P. N. (2010). Phytoremediation of chromium contaminated soil using Sorghum plant. International Journal of Environmental Sciences, 2(2), 417-428.
Roslim, D. I., Andandia, R., & Herman. (2015). Respon kecambah padi (Oryza sativa L.) asal Bengkalis, Riau terhadap cekaman garam. Biosaintifika: Journal of Biology & Biology Education, 7(1), 57-63.
Samantaray S., Rout G. R., & Das, P. (1998). The role of chromium on plant growth and metabolism. Acta Physiol. Plant, 20(2), 201–212.
Shams, K. M., Tichy, G., Fisher, A., Sager, M., Peer, T., Bashar, A., & Filip, K. (2010). Aspects of phytoremediation for chromium contaminated sites using common plants Urtica dioica, Brassica napus and Zea mays. Plant Soil, 328(1-2), 175-189.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environ. Int, 31(5), 739-753.
Sharma P., Sardana, V., & Banga, S.S. (2013). Salt tolerance of Indian mustard (Brassica juncea) at germination and early seedling growth. Environmental and Experimental Biology, 11, 39-46.
Shaw, B. P., & Rout, N. P. (2002). Mercury and cadmium induced changes in the level of proline and the activity of proline biosynthesizing enzymes in Phaseolus aureus Roxb. and Triticum aestivum L. Biol. Plant, 45, 267–271.
Supena, N., Soegianto, A., & Soetopo, L. (2014). Response of oil palm varieties to aluminium stress. The Journal of Tropical Life Science, 4(1), 51-60.
Tigabu, E., Andargie, M., & Tesfaye, K. (2013). Genotypic variation for salinity tolerance in Sorghum (Sorghum bicolor (L.) Moench) genotypes at early growth stages. J. Stress Physiol. Biochem, 9(2), 253-262.
Wani, P. A., Khan, M. S., & Zaidi, A. (2012). Toxic effects of heavy metals on germination and physiological processes of plants. In: Zaidi, A., Wani, P.A., & Khan, M.S. (Eds.).Toxicity of heavy metals to legumes and bioremediation. Springer-Verlag , Wien. pp: 45-66.
Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot, 76(2), 167–179.
Yu, X. Z., & Gu, J. D. (2007). Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x S.alba L.) metabolism. Arch. Environ. Contam. Toxicol, 52(4), 503-511.
Zayed, A. M., Lytle, C. M., Qian, J., & Terry, N. (1998). Chromium Accumulation, Translocation and Chemical Speciation in Vegetable Crops. Planta, 206(2), 293-299.
____________ & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249(1), 139-156.
Zhang, X., Liu, J., Wang, D., Zhu, Y., Hu, C., & Sun, J. (2009). Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz. Bull. Environ. Contam. Toxicol, 82(3), 358-362.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.