In Vitro Selection of Local Maize (Zea mays) on NaCl Stress and Its Genetic Characterization using RAPD

Triono Bagus Saputro(1), Fathin Finariyah(2), Siti Dianawati(3), Nur Fadlilatus Sholihah(4), Dini Ermavitalini(5),


(1) Biology Department, Mathematics and Natural Sciences Faculty, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(2) Biology Department, Mathematics and Natural Sciences Faculty, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(3) Biology Department, Mathematics and Natural Sciences Faculty, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(4) Biology Department, Mathematics and Natural Sciences Faculty, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
(5) Biology Department, Mathematics and Natural Sciences Faculty, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract

Maize (Zea mays) is one of graminae plants that widely spread for many purposes wheter in food industry, feed, or bioenergy. Those high utilization required an increment in production, but unfortunately the needs were not meet to the demands since conversion of agricultural area increase lately. Indonesia has 99.093 km of shoreline that recognize as marginal land where the salinity is high as well. This research try to obtain tolerant variant from two local cultivars that planted in Madura Island. Manding and Talango varieties were used as an explant for callus induction stage in MS supplemented with 2.4 D. The result show that 4 ppm of 2.4 D were the best concentration to induce the callus in both varieties. The induced callus were exposed to medium MS that contain NaCl (0, 2500, 5000, and 7500 ppm). In 7500 ppm of NaCl, Manding variety has 100% of surviving callus, while Talango variety only 66.7%. Furthermore, Manding variety shows a better performance in callus weight improvement with 170 mg, while Talango shows no improvement of callus weight. The result of RAPD analysis indicate that the genome characteristic were different between initial callus and surviving callus. Out of ten primers, only five primers shows polymorphism i.e OPA 13, OPB 07, OPC 02, OPK 20, and OPU 19. Manding can be further developed as high tolerance variety in Salinity stress, thus it proposed to be developed furthermore.

How to Cite

Saputro, T. B., Finariyah, F., Dianawati, S., Sholihah, N. F., & Ermavitalini, D. (2016). In Vitro Selection of Local Maize (Zea mays) on NaCl Stress and Its Genetic Characterization using RAPD. Biosaintifika: Journal of Biology & Biology Education, 8(3), 344-352. 

Keywords

Callus; Selection; NaCl; Random Amplified Polymorphism DNA (RAPD)

Full Text:

PDF

References

Al-Abed, D., Redrabhatla, S., Talla, R., & Goldman, S. (2006). Split-seed: anew tool for maize researchers. Planta, 223,1355-1360.

Anwar, N., Kikuchi, A., & Watanabe, K. N. (2010). Assessment of somaclonal variation for salinity tolerance in sweet potato regenerated plants. African Journal of Biotechnology, 9(43), 7256-7265.

Arulselvi, I., & Krishnaveni, S. (2009). Effect of hormones. explants and genotypes in in vitro culturing of sorghum. Journal of Biochemical Technology, 1(4), 96-103.

Bahmani, K., Noori, S. A. S., Darbandi, A. I., & Akbari, A. (2015). Molecular mechanisms of plant salinity tolerance: a review. Australian Journal of Crop Science, 9(4), 321.

Balkrishna, R. A., & Shankarrao, S. S. (2013). In vitro screening and molecular genetic markers associated with salt tolerance in maize. African Journal of Biotechnology, 12(27), 4251-4255.

Bordallo, P. N., Silva, D. H., Maria, J., Cruz, C. D., & Fontes, E. P. (2004). Somaclonal variation on in vitro callus culture potato cultivars. Horticultura Brasileira, 22(2), 300-304.

Farid, M., Musa, Y., Nasaruddin, & Darmawan. (2006). Variasi Somaklonal Tebu Tahan Salinitas Melalui Mutagenesis In Vitro. Jurnal Agrivigor, 5(3), 247-258.

Gorji, A. H., Zolnoori, M., Jamasbi, A., & Zolnoori, Z. (2011). In vitro plant generation of tropical maize genotypes. In International Conference on Environmental. Biomedical and Biotechnology IPCBEE (Vol. 16, pp. 52-59).

Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological. biochemical. and molecular characterization. International Journal of Genomics, 2014.

Huang, X. Q., & Wei, Z. M. (2004). High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Reports, 22(11), 793-800.

Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant, 6(2), 275-286.

Khoddamzadeh, A. A., Sinniah, U. R., Kadir, M. A., Kadzimin, S. B., Mahmood, M., & Sreeramanan, S. (2010). Detection of somaclonal variation by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb. f.) Christenson. African Journal of Biotechnology, 9(40), 6632-6639.

Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1-18.

Kusvuran, S., Ellialtioglu, S., Yasar, F., & Abak, K. (2012). Antioxidative enzyme activities in the leaves and callus tissues of salt-tolerant and salt-susceptible melon varieties under salinity. African Journal of Biotechnology, 11(3), 635-641.

Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197-214.

Mahajan, S., & Tuteja, N. (2005). Cold. salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158.

Mansour, M. M. F., Salama, K. H. A., Ali, F. Z. M., & Abou Hadid, A. F. (2005). Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen. Appl. Plant Physiol, 31(1-2), 29-41.

Mulanda, E. S., Chuhila, Y., Awori, R. M., Adero, M. O., Amugune, N. O., Akunda, E., & Kinyamario, J. I. (2015). Morphological and RAPD-marker characterization of Melia volkensii (Gürke) in vitro plants regenerated via direct and indirect somatic embryogenesis. African Journal of Biotechnology, 14(15), 1261-1274.

Müller, E., Brown, P. T. H., Hartke, S., & Lörz, H. (1990). DNA variation in tissue-culture-derived rice plants. Theoretical and Applied Genetics, 80(5), 673-679.

Munir, N., & Aftab, F. (2013). Effect of NaCl Stress on Callus Morphology and Growth of Sugarcane Callus Culture (cv. SPF 234 and cv. HSF 240). Pakistan Journal of Science, 65(4), 473-477.

Patade, V. Y., Suprasanna, P., Bapat, V. A., & Kulkarni, U. G. (2006). Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC Newsletter, 273, 244.

Pathi, K. M., Tula, S., Huda, K. M. K., Srivastava, V. K., & Tuteja, N. (2013). An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signaling & Behavior, 8(10), e25891.

Pirttilä, A. M., Podolich, O., Koskimäki, J. J., Hohtola, E., & Hohtola, A. (2008). Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.). Plant Cell. Tissue and Organ Culture, 95(1), 47-55.

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environmental and Experimental Botany, 71(1), 89-98.

Randriani, E., Tresniawati, C., & Syafaruddin, S. (2012). Pemanfaatan Teknik Random Amplified Polymorphic DNA (RAPD) Untuk Pengelompokan Secara Genetik Plasma Nutfah Jambu Mete (Annacardium occidentale L.). Jurnal Tanaman Industri dan Penyegar, 3(1), 1-6.

Gonzáles-Rosas, H., Salazar-Garcia, S., Ramírez-Reyes, G., Rodríguez-Ontiveros, J. L., Rao. P. S., & Ramos-Villasenor, A. C. (2003). Preliminary results of in vitro selection for tolerance to chloride excess in avocado. Revista Chapingo. Texcoco, 9(1), 39-43.

Ruwaida, I. P. (2009). Variability analysis of Sukun durian plant (Durio zibethinus) based on RAPD marker. Bioscience, 1(2), 84-91.

Samad, M. A., Begum, S., & Majid, M. A. (2001). Somaclonal variation and irradiation in sugarcane calli for selection against red rot. waterlogged conditions and delayed or non-flowering characters. IAEA-TECDOC, 1227, 45-50.

Sevengor, S., Yasar, F., Kusvuran, S., & Ellialtioglu,S. (2011). The effect of salt stress on growth. chlorophyll content. lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21), 4920-4924.

Sunandar, D. & Imron. (2010). Optimalisasi Templat DNA Gen Genom Udang Galah. Macrobrachium rosenbergii dalam Proses PCR – RAPD. Prosiding. Forum Inovasi Teknologi Akuakultur.

de Vasconcelos, M. J. V., Antunes, M. S., Barbosa, S. M., & De Carvalho, C. H. S. (2008). RAPD analysis of callus regenerated and seed grown plants of maize (Zea mays L.). Revista Brasileira de Milho e Sorgo, 7(2), 93-104.

Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531-6535.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.