Screening Cellulolytic Bacteria from the Digestive Tract Snail (Achatina fulica) and Test the Ability of Cellulase Activity

Wijanarka Wijanarka(1), Endang Kusdiyantini(2), Sarjana Parman(3),


(1) Departement of Biology, Faculty of Science and Mathematics, The University of Diponegoro, Semarang Indonesia
(2) Departement of Biology, Faculty of Science and Mathematics, The University of Diponegoro, Semarang Indonesia
(3) Departement of Biology, Faculty of Science and Mathematics, The University of Diponegoro, Semarang Indonesia

Abstract

On the research of enzyme production levels observed cellulase produced by bacteria in the digestive tract of the isolation of the Snail (Achatina fulica). Isolation of bacteria based on the ability of bacteria to grow on CMC media. The purpose of this study was to determine cellulase activity by cellulolytic bacteria. Some bacterial isolates were identified as cellulolytic bacteria, they were KE-B1, KE-B2, KE-B3, KE-B4, KE-B5, and KE-B6. Isolates KE-B6 was the best isolates. Furthermore KE-B6 isolates were grown on media production to determine the pattern of growth and enzyme activity. Measurement of cell growth was conducted by inoculating starter aged 22 hours at CMC production of liquid medium. Cellulase enzyme activity measurements was performed by the DNS method. The results showed that the highest activity by new isolate bacteria KE-B6 and its value of the activity of 0.4539 U/mL, growth rate (µ) 0.377/hour and generation time (g) 1.84 hour. This research expected cellulase of producing bacteria were easy, inexpensive and efficient. This enzyme can be used as an enzyme biolytic once expected to replace expensive commercial enzyme. The biotylic enzyme can be applied to strains improvement (protoplast fusion).

How to Cite

Wijanarka, W., Kusdiyantini, E. & Parman, S. (2016). Screening Cellulolytic Bacteria from the Digestive Tract Snail (Achatina fulica) and Test the Ability of Cellulase Activity. Biosaintifika: Journal of Biology & Biology Education, 8(3), 386-392. 

Keywords

cellulase activity; cellulolytic bacteria in the snail

Full Text:

PDF

References

Al-Arif, M. A., Darmanto, W., & Nurhajati, N. N. T. (2012). Isolasi dan identifikasi bakteri selulolitik dengan aktivitas tinggi dalam saluran pencernaan keong emas (Pomacea canaliculata). Jurnal JBP Biosains, 14(2), 86-92.

Balasubramanian, N., & Damodaran, L. (2008). Characteristics of protoplast inter, intra-fusan and regeneration of antagonistic fungi Trichoderma harzianum and Trichoderma viridae. Afri. J. Biotech, 7(18), 3235-3243.

Castro-Vazquez A., Albrecht, E. A., Vega, I. A., Koch, E., & Gamarra-Luques, C. (2002). Pigmented corpuscles in the midgut gland of Pomacea canaliculata and other neotropical apple-snails (Prosobranchia, Ampullariidae): A possible symbiotic association. Journal of Biocell. 26(1), 101-109.

Dini, I. R., & Ifah, M . (2014). Produksi Dan Karakterisasi Enzim Selulase Ekstrak Kasar dari Bakteri yang Diisolasi dari Limbah Rumput Laut. Jurnal Teknologi dan Industri Pertanian Indonesia, 6(3), 18-24.

Dinoto, A., Suksomcheep, A., Ishizuka, S., Kimura, H., Hanada, S., Kamagata, Y., Asano, K., F. Tomita, F., & Yokota, A. (2006). Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl. Environ. Microbiol, 72(1), 784-792.

Dinoto, A., Watumlawar, C. C., & Yopi. (2013). In vitro modulation of human intestinal microbiota by mannoligosaccharides synthesized from Amorphophallus muelleri glucomannan. Journal. Microbiology, 7(4), 144-151.

Dwijoseputro, D. (2010). Dasar-dasar Mikrobiologi. Jakarta: Djambatan

Ezeronye, O. U., & Okerentugba, P. O. (2001). Optimum conditions for yeast protoplast release and regeneration in S. cerevisiae and C. tropicalis using gut enzyme of the giant african snail Achatina achatina. Letters in Journal Applied Microbiology, 32(3), 190-193.

Johnsen, H. N., & Kirsten, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. Int. Journal Mol. Sci., 15(1), 830-838.

Jurick, W. M., Vico, I., Whitaker, B. D., Gaskins, V. L., & Janisiewicz, W. J. (2012). Application of the 2-cyanoacetamide methode for spectrofotometric assay of cellulase enzyme cctivity. Journal of Plant Pathology, 11(1), 38-41.

Krishnamoorthy, R., Narayanan, K., Vijila & Kumutha, K. (2010). Intergeneric protoplast fusion of yeast for high ethanol production from cheese industry waste-whey. Journal of Yeast. Fungal Res., 1(5), 81-87.

Madigan, M., Martinko, J. M., P. V. Dunlap, P. V., & Clark, D. P. (2009). Biology of Microorganism. Twelfth edition. San Francisco. Booston. New York: Pearson Benjamin Cummings.

Morana, A. M. (2011). Cellulase from fungi and bacteria and their biotechnological applications. In A.E. Golan, Cellulase: types and action, mechanism, and uses. New York: Nova Science Publishers, Inc.

Musman, M. (2012). Uji selektivitasfraksi Rf < 0,5 ekstrak MeOH biji putat air terhadap ikan mujair. Jurnal Depik, 1(2), 121-124

Okonkwo, I. F. (2014). Effect of substrate concentration on the activity of cellulase produced by Aspergillus flavus, Indian Journal Apllied Research, 4(7), 32-34.

Pawar, K. D., Mudasir,A., & Bharati P. R. (2015). Enrichment and identification of cellulolytic bacteria from the gastrointestinal tract of giant afican snail, Achatina fulica. Journal Appl Biochem Biotechnol, 175(4), 1971-1980

Sadhu, S., Pallab K, G., Goutam A., & Tushar K. M. (2014). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. Journal of King University-Science, 26(4), 323-332

Sahin, S., Osman, I., & Biyik, H. H. (2013). Purification and characterization of endo-β-1-4-glucanase from local isolate Trichoderma ouroviride. International Journal of Bioscience, Biochemistry Bioinformatic, 3(2), 129-132

Verma, N., Bansal & Vivek, K. (2004). Protoplast Fusion Technology and Its Biotechnology Applications. India: Departement of paper Technology, Indian Institute of Technology, Rookee, Saharanpur.

Waites, M. J., Neil, L. M., John, S. R. & Gary, H. (2001). Industrial microbiology: An Introduction. Oxford: Blackwell.

Wenzel M, I., Schonig, M., Berchtold, P., Kamfer & Konig, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopis angusticollis. Journal of Applied Microbiology, 92(1), 32-40

Yang, W., Fanxu, M., Jiayin, P., Peng, H., Fang F., Li, M., & Binyun, C. (2014). Isolation and Identification of a cellulolytic bacterium from the tibetan pig’s intestine and investigation of its cellulase production. Electronic Journal of Biotechnology, 17(6), 262-267.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.