Application of rps16 Intron and trnL-trnF Intergenic Spacer Sequences to Identify Rengas Clone Riau
(1) Laboratorium Genetika, Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Indonesia
(2) Laboratorium Genetika, Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Indonesia
Abstract
Rengas clone Riau has been identified using morphological characters and molecular technique with a psbA-trnH intergenic spacer, however, this method can only determine its taxonomic status at genus level, namely Gluta sp. This study reports application two DNA barcodes, i.e. rps16 intron and trnL-trnF intergenic spacer, to identify Rengas clone Riau. The methods included collection of the leaves from Kajuik Lake, total DNA isolation, electrophoresis, PCR (polymerase chain reaction), gel purification and sequencing. The rps16 intron size was 659 bp and the trnL-trnF intergenic spacer was 527 bp. The BLASTn analysis showed that sequences of the rps16 intron and the trnL-trnF intergenic spacer of Gluta sp clone Riau had 100% similarity to those of G. renghas deposited in GenBank. These results were supported by high max score, high total score, query cover = 100%, and E-value = 0. The dendrograms also showed the closest relationship of Gluta sp clone Riau with G. renghas deposited in GenBank compared to other species of Gluta. In conclusion, this study succeeded in identifying Rengas clone Riau as Gluta renghas by using sequences of the rps16 intron and the trnL-trnF intergenic spacer. A combination of DNA barcodes could be applied to identify various plants as long as the database for the DNA barcodes is available in public database such as GenBank.
Keywords
Full Text:
PDFReferences
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25(17), 3389-3402.
Adrienne, E. Ng., Sandoval, E., Murphy, T. M. (2015). Identification and Individualization of Lophophora using DNA Analysis of the trnL/trnF Region and rbcL Gene. Journal of forensic sciences, 61(S1)
Borsch, T. & Quandt, D. (2009). Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Plant Systematics and Evolution, 282(3), 169-199.
Buerki, S., Callmander, M. W., Devey, D. S., Chappell, L., Gallaher, T., Munzinger, J., Haevermans, T., Forest, F. (2012). Straightening out the screw-pines: A first step in understanding phylogenetic relationships within Pandanaceae. TAXON, 61(5), 1010-1020.
CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106, 12794–12797 (2009).
Daniell, H., Lin, C., Yu, M., Chang, W. (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology, 17, 134.
de Groot, G. A., During, H. J., Maas, J. W., Schneider, H., Vogel, J. C., Erkens, R. H. J. (2011). Use of rbcL and trnL-F as a Two-Locus DNA Barcode for Identification of NWEuropean Ferns: An Ecological Perspective. PLoS ONE, 6(1), e16371
DeSalle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology, 20(5), 1545–1547.
Elvyra, R. & Yus, Y. (2012). Ikan Lais dan Sungai Paparan Banjir di Provinsi Riau. Pekanbaru: UR Press Pekanbaru.
Fassler, J. & Cooper, P. (2008). BLAST Help. Bethesda (MD): National Center for Biotechnology Information (US).
Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S.W., Newmaster, S. G., Husband, B. C., Percy, D. M., Hajibabaei, M., Barrett, S. C. H. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3(7), e2802.
Fern, K. (2014). Useful Tropical Plants Database. Creative Commons Attribution - Non Commercial – Share Alike 3.0 Unported License. http://tropical.theferns.info/image.php? id=Gluta+renghas). Accessed 1 January 2016.
Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270, 313–321.
Hebert, P. D. N. & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859.
Kelchner, S. A. (2002). Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. American Journal of Botany, 89(10), 1651–1669.
Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, 106(44), 18621-18626.
Lee, S-C., Wang, C-H., Yen, C-E., & Chang, C. (2016). DNA barcode and identification of the varieties and provenances of Taiwan’s domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences. Journal of Food and Drug Analysis, 25(2), 260-274.
Madden, T. (2013). The NCBI Handbook, 2nd edition. Bethesda (MD): National Center for Biotechnology Information (US).
Nithaniya, S. & Parani, M. (2016). Evaluation of chloroplast and nuclear DNA barcodes for species identification in Terminalia L. Biochemical Systematics and Ecology, 68, 223-229.
Pang, X., Liu, C., Shi, L., Liu, R., Liang, D., Li, H., Cherny, S. S., Chen, S. (2012). Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: A meta-analysis. PLoS ONE, 7, e48833.
Roslim, D. I. (2017). Pandan (Pandanus sp), Rotan (Calamus sp), and Rengas (Gluta sp) from Kajuik Lake, Riau Province, Indonesia. Brazilian Archives of Biology and Technology, 60, e17160419.
Roslim, D. I., Khumairoh, S., Herman. (2016a). Confirmation of tuntun angin (Elaeocarpus floribundus) taxonomic status using matK and ITS sequences. Biosaintifika: Journal of Biology & Biology Education, 8(3), 392-399.
Roslim, D. I., Nurkhairani, P., Herman, Elvyra, R. (2016b). Identification of durik-durik plant (Syzygium sp) using the psbA-trnH intergenic spacer and ITS regions. Transaction of Persatuan Genetik Malaysia, 3, 11-16.
Ryzhkova, N. N., Slugina, M. A., Kochieva, E. Z., Skryabin, K. G. (2013). Polymorphism and structural variation of rps16 group-II intron in the Solanum species. Genetika, 49(7), 824-9.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Rober,. V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241–6246.
Selvaraj, D., Shanmughanandhan, D., Sarma, R. K., Joseph, J. C., Srinivasan, R. V., Ramalingam, S. (2012). DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from Its adulterants. Genomics Proteomics Bioinformatics, 10(6), 364–367.
Shaw, J., Lickey, E. B., Schilling, E. E., Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in Angiosperms: the Tortoise and the Hare III. American Journal Of Botany, 94(3), 275–288.
Sivalingam, D., Rajendran, R., Anbarasan, K. (2016). Studies on DNA barcoding of sacred plant - Ficus religiosa L. Journal of Applied and Advanced Research, 1(1), 29-39.
Smedmark, J. E. E., Rydin, C., Razafimandimbison, S. G., Khan, S. A., Liede-Schumann, S., Bremer, B. (2008). A phylogeny of Urophylleae (Rubiaceae) based on rps16 intron data. TAXON, 57(1), 24–32.
Stoeckle, M. (2003). Taxonomy, DNA, and the bar code of life. BioScience, 53(9), 796-797
Sugita, M. Sugiura, M. (1996). Regulation of gene expression in chloroplasts of higher plants. Plant Molecular Biology, 32(1), 315-326.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
Taberlet ,P., Gielly, L., Pautou, G., Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5), 1105-1109.
Vasconcelos, T. N. C., Proença, C. E. B., Ahmad, B., Aguilar, D. S., Aguilar, R., Amorim, B. S., Campbell, K., Costa, I. R., De-Carvalho, P. S., Faria, J. E. Q., Giaretta, A., Kooij, P. W., Lima, D. F., Mazine, F. F., Peguero, B., Prenner, G., Santos, M. F., Soewarto, J., Wingler, A., Lucas, E.J. (2017). Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae. Molecular Phylogenetics and Evolution, 109, 113-137.
Will, K. W. & Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 20, 47–55.
Wu, D-C., He, D-M., Gu, H-L., Wu, P-P., Yi, X., Wang, W-J., Shi, H-F., Wu, D-X., Sun, G. (2016) Origin and evolution of allopolyploid wheatgrass Elymus fibrosus (Schrenk) Tzvelev (Poaceae: Triticeae) reveals the effect of its origination on genetic diversity. PLoS ONE, 11(12), e0167795.
Yang, R., Feng, X., & Gong, X. (2016). Genetic structure and demographic history of Cycas chenii (Cycadaceae), an endangered species with extremely small populations. Plant Diversity, 39(1), 44-51.
Yurtseva, O. V., Kuznetsova, O. I., Mavrodiev, E. V. (2016). A broadly sampled 3-loci plastid phylogeny of Atraphaxis (Polygoneae, Polygonoideae, Polygonaceae) reveals new taxa: I. Atraphaxis kamelinii spec. nov. from Mongolia. Phytotaxa, 268(1), 001–024.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.