Fe Filtration Comparison of Micro-Size Carbon Materials from Coconut Shell, Rice Straw, and Bamboo for Mataram Canal Water

B W Pratama(1), W S B Dwandaru(2),


(1) Jurusan Pendidika Fisika, FMIPA, Universitas Negeri Yogyakarta, Indonesia
(2) Jurusan Pendidika Fisika, FMIPA, Universitas Negeri Yogyakarta, Indonesia

Abstract

Tujuan penelitian ini adalah menghasilkan material karbon berukuran mikro (MSC) berbahan dasar tempurung kelapa, bambu, dan jerami padi melalui ultrasonikasi dalam fase cair. Bahan MSC yang telah dihasilkan selanjutnya digunakan sebagai material filtrasi logam besi (Fe) untuk sampel air yang diambil dari selokan Mataram Yogyakarta. Kandungan Fe untuk berbagai sampel air setelah proses filtrasi menggunakan ketiga material MSC dibandingkan berdasarkan atomic absorption spectroscopy (AAS). Dalam penelitian ini, alat-alat ultrasonikasi dan filtrasi sederhana merupakan hasil rakitan sendiri. Hasil penelitian ini mengindikasikan bahwa kandungan Fe dalam sampel air selokan Mataram mengalami penurunan setelah difiltrasi menggunakan material MSC. Kandungan Fe dalam sampel air sebelum difiltrasi adalah 0,9039 ppm, namun setelah difiltrasi menggunakan material MSC berbahan tempurung kelapa, bambu, dan jerami, kandungan Fe berturut-turut menjadi 0,0439 ppm; 0,0430; dan 0,0671 ppm.  Dengan demikian, filtrasi Fe yang paling baik untuk sampel air selokan Mataram adalah menggunakan material MSC berbahan bambu.

This study aims to produce micro-sized carbon (MSC) materials from coconut shell, bamboo, and rice straw via ultrasonication in liquid-phase. The MSCs obtained are utilized as iron (Fe) filtration for Mataram canal water. The Fe content of the water samples after filtration using the three MSC materials are compared based on atomic absorption spectroscopy (AAS). In this study, the ultrasonication and simple filtration apparatuses are self-custom made. The results of this study indicate that Fe content has decreased after filtration treatments. The Fe content of the Mataram canal water sample before filtration is 0.9039 ppm, but after filtration using coconut shell, bamboo, and rice straw carbon materials the Fe content becomes 0.0439 ppm, 0.0430 ppm and 0.0671 ppm, respectively. Thus, the best Fe filtration for Mataram canal water sample is using MSC material from bamboo.

Keywords

micro-sized carbon material; ultrasonication; Fe filtration; Mataram canal

Full Text:

PDF

References

Alslaibi TM, Abustan I, Ahmad MA & Foul AA. 2013. Kinetics and Equilibrium Adsorption of Iron (II), Lead (II), and Copper (II) onto Activated Carbon Prepared from Olive Stone Waste. Desalin Water Treat 52(40-42): 1-11. DOI: 10.1080/19443994.2013.833875.

Arnold BF, & Colford Jr JM. 2007. Treating Water with Chlorine at Point-of-use to Improve Water Quality and Reduce Child Diarrhoea in Developing Countries: a Systematic Review and Meta-analysis. Am J Trop Med Hyg. 76: 354-364. DOI: 10.4269/ajtmh.2007.76.354.

Babel S & Kurniawan TA. 2004. Cr(IV) Removal from Synthetic Wastewater Using Coconut Shell Charcoal and Commmerical Activated Carbon Modified with Oxidizing Agents and/or Chitosan. Chemosphere 54(7): 951-967. DOI: 10.1016/j.chemosphere.2003.10.001.

Boyce JM, Kelliher S & Vallande N. 2008. Skin Irritation and Dryness Associated with Two Hand-hygiene Regimens: Soap-and-water Hand Washing Versus Hand Antisepsis with Alcoholic Hand Gel. Infect Control Hosp Epidemiol 21: 442-448. DOI: 10.1086/501785.

Craig H, Gordon LI & Horibe Y. 1963. Isotopic Exchange Effects in the Evaporation of Water. J Geophys Res 68: 5079-5087. DOI: 10.1029/JZ068i017p05079.

Daifullah AAM, Yakout SM & Elreefy SA. 2007. Adsorption of Fluoride in Aqueous Solutions using KMnO4-modified Activated Carbon Derived from Steam Pyrolysis of Rice Straw. J Hazard Mater 147(1-2): 633-643. DOI: 10.1016/j.jhazmat.2007.01.062.

Eklind Y & Kirchmann H. 2000. Composting and Storage of Organic Household Waste with Different Litter Amendments II: Nitrogen Turnover and Losses. Bioresour Technol 74: 125-133. DOI: 10.1016/S0960-8524(00)00005-5.

Gleick PH. 1996. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water Int. 21: 83-92. DOI: 10.1080/02508069608686494.

Hernandez Y, Nicolosi V, Lotya M, Blighe FM & Sun Z, et al. 2008. High-yield Production of Graphene by Liquid-phase Exfoliation of Graphite. Nat Nanotechnol. 3: 563-568. DOI: 10.1038/nnano.2008.215

Kannan N & Sundaram MM. 2001. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons-A Comparative Study. Dyes Pigm 51(1): 25-40. DOI: 10.1016/S0143-7208(01)00056-0.

Kobya M. 2004. Removal of Cr(IV) from Aqueous Solutions by Aadsoption onto Hazelnut shell Activated Carbon: Kinetics and Equilibrium Studies. Biosour Technol. 91(3): 317-321. DOI: 10.1016/j.biortech. 2003.07.001.

Kohgo Y, Ikuta K, Ohtake T, Torimoto Y & Kato J. 2008. Body Iron Metabolism and Pathophysiology of Iron Overload. Int J Hematol. 88: 7–15. DOI: 10.1007/s12185-008-0120-5.

Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R & Kurihara M. 2012. Efficient Technologies for Worldwide Clean Water Supply. Chem Eng Process: Process Intensific 51: 2-17. DOI: 10.1016/j.cep. 2011.09.011.

Maddison A. 2001. The World Economy: A Millenial Perspective. OECD.

Mandi MAL & Ouazzani N. 2009. Removal of Organic Pollutants and Nutrients from Olive Mill Wastewater by a Sand Filter. J Environ Manage 90: 2771-2779. DOI: 10.1016/j.jenvman.2009. 03.012.

Medve J, Lee D & Tierneld F. 1998. Ion-exchange Chromatographic Purification and Quantities Analysis of Trichoderma reesei cellulose cellobiohydrolase I, II, and endoglucanase II by Fast Protein Liquid Chromatography. J Chromatogr A 808: 153-165. DOI: 10.1016/S0021-9673(98)00132-0.

Mizuta K, Matsumoto T, Hatate Y, Nishihara K & Nakanishi T. 2004. Removal of Nitrate-Nitrogen from Drinking Water Using Bamboo Powder Charcoal. Biosour Technol 95(3): 255-257. DOI: 10.1016/ j.biortech.2004.02.015.

Murat A, Segura JJ, Oro-Sole J & Casan-Pastor N. 2012. The Synthesis of Graphene Sheets with Controlled Thickness and Order Using Surfactant Assisted Electrochemical Processes. Carbon 50: 142-152. DOI: 10.1016/j.carbon.2011.07.064.

Ren LJ, Tan X & Wang X. 2013. Comparative Study of Graphene Oxide, Activated Carbon and Carbon Nanotubes as Adsorbents for Copper Decontamination. Dalton Trans 42: 5266-5274. DOI: 10.1039/C3DT32969K.

Robert C & Kupper TS. 1999. Inflammatory Skin Diseases, T Cells, and Immune Surveillance. N Engl J Med 341: 1817-1828.

DOI: 10.1056/NEJM199912093412407.

Savage XN & Diallo MS. 2005. Nanomaterials and Water Purification: Opportunities and Challenges. J Nanopart Res 7: 331–342. DOI: 10.1007/s11051-005-7523-5.

Shannon MA, Bohn PW, Elimenech M, Georgiadis JG, Marinas BJ & Mayes AM. 2008. Science and Technology for Water Purification in the Coming Decades. Nature 452: 301-310.

Sherard JL, Dunnigan, LP & Talbot JR. 1984. Basic Properties of Sand and Gravel Filters. J Geotech Eng 110: 684-700. DOI: 10.1061/(ASCE)0733-9410(1984)110:6(684).

Snider L. 2004. Resisting Neo-liberalism: The Poisoned Water Disaster in Walkerton Ontario. Soc Leg Stud 13: 265-289. DOI: 10.1177/0964663904042554.

Sobsey MD, Stauber CE, Casanova LM, Brown JM & Elliot MA. 2008. Point of Use Household Drinking Water Filtration: A Practical, Effective Solution for Providing Sustained Access to Safe Drinking Water in the Developing World. Environ Sci Technol. 42: 4261-4267. DOI: 10.1021/es702746n.

Thompson T, Sobsey M & Bartram J. 2003. Providing Clean Water Keeping Water Clean: an Integrated Approach. Int J Environ Health Res 13: 89-94. DOI: 10.1080/0960312031000102840.

Wang SL, Tzou YM, Lu YH & Sheng G. 2007. Removal of 3-chlorophenol from Water Using Rice Straw-based Carbon. J Hazard Mater 147(1-2): 313-318. DOI: 10.1016/j.jhazmat.2007.01.031.

Wotton RS. 2002. Water Purification Using Sand. Hydrobiologia 469: 193-201.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.