Efek Paparan Logam Berat Terhadap Kadar Malondialdehida dan Aktivitas Katalase Ikan Mas dan Ikan Nila di Sungai Kaligarang

N K Dewi(1),


(1) Jurusan Biologi, FMIPA, Universitas Negeri Semarang, Indonesia

Abstract

Sampah domestik, aktivitas industri, dan proses pertanian berkontribusi terhadap cemaran logam berat seperti Pb, Cd dan Hg di perairan Sungai Kaligarang. Cemaran logam berat menimbulkan terjadinya stres oksidatif, yaitu ketidakseimbangan antara oksidan dan antioksidan. Indikator stres oksidatif adalah malondialdehida (MDA) dan enzim katalase (CAT). Penelitian ini bersifat deskriptif dengan pendekatan crossectional untuk mengetahui kandungan Pb, Cd dan Hg serta aktivitas enzim CAT dan MDA pada organ hati ikan Mas (Cyprinus carpio L.) dan ikan Nila (Oreochromis niloticus L.), yang dipelihara dalam Karamba Jaring Apung (KJA) di sungai Kaligarang, Semarang. Analisis kadar Cd, Pb dan Hg menggunakan Atomic Absorption Spectrophotometer (AAS). Aktivitas katalase dan kadar MDA ditentukan menggunakan spektrofotometer. Uji normalitas data mengunakan Shapiro-wilk (p>0,05). Perbedaan kadar Pb, Cd dan Hg antara ikan mas dan ikan nila dianalisis menggunakan uji t tidak berpasangan, dengan taraf kepercayaan 95%. Data yang diperoleh menunjukkan bahwa kadar logam berat Pb, Cd dan Hg serta kadar MDA mengalami peningkatan di dalam organ hati dari minggu ke-2, ke-4 dan ke-6. Aktivitas enzim katalase meningkat dari minggu ke-2 ke minggu ke-4 dan menurun pada mingu ke-6. Logam berat Pb, Cd dan Hg perairan berpengaruh terhadap kadar Pb, Cd dan Hg ikan nila, tetapi tidak berpenaruh terhadap Pb ikan mas. Logam berat Pb, Cd dan Hg diduga penyebab terbentuknya ROS dan berakibat timbulnya stres oksidatif. Katalase merupakan enzim antioksidan yang dapat digunakan sebagai biomarker stress oksidatif dan toksistas logam berat pada ikan air tawar, serta indikator yang sensitif terhadap cemaran perairan.

 

Domestic waste, industrial activities, and agricultural processes contribute to heavy metal contamination such as Pb, Cd and Hg in Kaligarang river. Heavy metal contamination causes oxidative stress, which is an imbalance between oxidants and antioxidants. Indicators of oxidative stress are catalase enzymes (CAT) and malondealdehyde (MDA). This research is a descriptive crossectional approach to determine the content of Cd, Pb and Hg and the activity of catalase enzymes and malondeladehide (MDA) in goldfish (Cyprinus carpio L.) and parrot fish (Oreochromis niloticus L.), which were kept in floating net cages on the Kaligarang river. Fish which were used in this research were 2.5 months old, the weight were 19-25 grams, and the average of body length were 8-12 cm. Fish samples were 20 goldfish and 20 parrot fish. Analysis of Cd, Pb and Hg levels used Atomic Absorption Spectrophotometer. Catalase activity was determined used a spectrophotometer with 240nm wavelength. Whereas MDA determination used spectrophotometer at a wavelength of 532-534 nm. Data normality test was determined using Shapiro-wilk (p> 0.05). Differences levels of Pb, Cd and Hg between goldfish and parrot fish were analyzed using unpaired t test, with a 95% confidence level. Statistical analysis was determined using SPSS for windows 17.0. The data which was obtained showed that the levels of heavy metals Pb, Cd, Hg, and MDA experienced an increase in liver since the 2nd, 4th and 6th weeks. Catalase enzyme activities increased from 2nd until 4th week and decreased in 6th week. Heavy metals of Pb, Cd and Hg affect the levels of Pb, Cd and Hg of parrot fish, but didnot not affect in goldfish. Heavy metals of Pb, Cd and Hg are thought to be the cause of ROS formation and result in oxidative stress. Catalase is an antioxidant enzyme that can be used as a biomarker of oxidative stress and heavy metal toxicity in freshwater fish, as well as sensitive indicators in water contamination.

Keywords

Heavy Metal, Pollution, Malondealdehyde, Catalase Enzymes

Full Text:

PDF

References

Archer E, Petrie B, Kasprzyk-Hordern B, & Wolfaardt GM. 2017. The fate of Pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere174: 437-446,

BLH (Badan Lingkungan Hidup Jawa Tengah). 2009, Laporan Program Kali Bersih XXI. BLH Jateng Semarang.

Bertholdo-Vargas LR, Martins JN, Bordin D, Salvador M, Schafer AE, Barros NM, Barbieri L, Stirpe F, & Carlini CR. 2009. Type 1 ribosome-inactivating proteins - entomotoxic, oxidative and genotoxic action on Anticarsia gemmatalis (Hübner) and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). J Insect Physiol. 55(1):51-58

Buchwalter DB. 2001. Metals. In: Molecular and Biochemical Toxicology. Smart, R. C., Hodgson, E., Wiley. pp. 413-439

Capeyron CJ, Eric B, Jean P, Piere MR, Claude LL, & Benard D. 2002 A diet cholesterol and deflcient in vite incudes lipid peroxidation but does not enhance antioxidant enzyme expression in rat liver. J Nurt Biochem13:296-301.

Cappello T, Brandão F, Guilherme S, Santos MA, Maisano M, Mauceri A, Canário J, Pacheco M, & Pereira P. 2016. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining 1H NMR metabolomics and conventional biochemical assays. Sci Total Environ 548:13-24.

Choirudin & Indrajid. 2007. Eceng Gondok Penyerap Logam Berat Cd di Sungai Kaligarang Semarang. Makalah Olimpiade Science Tingkat Internasional di Turki, SMA Semesta Semarang.

Deblonde T, Cossu-Leguille C, & Hartemann P. 2011. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Env Health 214(6):442-448.

Duran A, Tuzen M, & Soylak M. 2014. Assessment of trace metal concentrations in muscle tissue of certain commercially available fish species from Kayseri, Turkey. Environ Monit Assess. 186(7):4619-4628.

Ercal N, Gurer-Orhan H, & Aykin-Burns N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529-539.

Gül S, Belge-Kurutas E, Yildiz E, Sahan A, & Doran F. 2004. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environ Int. 30:605-609.

Halliwell B. 2006. Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312-322.

Kartini & Danusaputro H. 2005. Estimasi Penyebaran Polutan dengan Metode Self Potential (Studi Kasus TPA Jati barang, Kecamatan Mijen, Semarang). Berkala Fisika 8 (1):27-32.

Kini RD, Tripathi Y, Raghuveer CV, Pai SAR, Ramaswamy C, & Kamath P. 2011. Role of vitamin C as an antioxidant in cadmium chloride induced testicular damage. Int J Appl Biol Pharmacol Technol 2(3):484-488.

Kovacik A, Arvay J, Tusimova E, Harangozo L, Tvrda E, Zbynovska K, Cupka P, Andrascikova S, Tomas J, Massanyi P. 2016. Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological parameters. Chemosphere 168:365-371.

Larose C, Canuel R, Lucotte M, Di Giulio RT. 2008. Toxicological effects of Methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol Part C: Toxicol Pharmacol 147(2):139-149.

Martinez JL. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893-2902.

Moreno HD, Casa-Resino I, Flores JM, González- Gómez MJ, Neila CM, Soler F, & Pérez-López M. 2014. Different enzymatic activities in carp (Cyprinus carpio L.) as potential biomarkers of exposure to the pesticide methomyl. Arh Hig Rada Toksikol. 65:311-318

Morsy AA, Salama KHA, Kamel HA, & Mansour MMF. 2012. Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of zygophyllum species. Eurasia J Biosci. 6: 1-10

Muthumani M. 2013. Tetrahydrocurcumin potentially attenuates arsenic induced oxidative hepatic dysfunction in rats. J Clin Toxicol 3(4): 1-10

Palar, H. 2008. Pencemaran dan Toksikologi Logam Berat. Jakarta: Rineka Cipta

Radhakrishnan M. 2008. Effect of cadmium on catalase activity in four tissues of freshwater fish Heteropneustes fossilis (Bloch.). Int J Vet Med 7(1):1-12.

Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, & Ait-Aissa S. 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ. Toxicol Pharmacol. 19:177-183.

Sevcikova M, Modra H, Slaninova A, & Svobodova Z. 2011. Metals as a cause of oxidative stress in fish: a review. Vet Med (Praha) 56(11):537-546.

Sivaperumal. 2007. Heavy Metal Concentration in Fish, Shellfish, and Fish Products from Internal Market of India vis-Ã -vis Internasional Standards. Food Chem 102: 612-620

Stanić B, Andrić N, Zorić S, Grubor-LajÅ¡ić G, & KovaÄević R. 2006. Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). Ecotoxicol Environ Saf. 65:395-402.

Suhartono E, Triawanti, Yunanto A, Firdaus RT, & Iskandar. 2013. Chronic cadmium hepatooxidative in rats: Treatment with haruan fish (channa striata) extract. APCBEE Procedia 5: 441-445.

Suran J, Prisc M, Rasic D, Srebocan E, & Crnic AP. 2013. Malondialdehyde and heavy metal concentrations in tissues of wild boar (sus scrofa L.) from central Croatia. J Environ Sci Health Part B 48: 147-152.

Tribowo A, Arizal MH, Nashrullah M, Aditama AR, and Utama DG. 2014. Oxidative stress of cadmium-induced ovarian rat toxicity. Int J Chem Eng Appl 5(3):21-31

Valko MD, Leibfritz J, Moncol MTD, Cronin M, Mazur, & Telser J. 2007. Free radicals and antioxidants in normal physiological function and human disease. Int J Biochem Cell Biol 39: 44-84.

Vestena S, Cambraia J, Ribeiro C, Oliveira JA, and Oliva MA. 2011. Cadmium-induced oxidative stress and antioxidative response in water hyacinth and salvinia. Braz J Plant Physiol 23(2):131-139.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.