ANALYSIS OF A VIRUS DYNAMICS MODEL WITH BEDDINGTON-DEANGELISH INFECTION RATE AND CTL IMMUNE RESPONSE

NA Kurdhi

Abstract


Penelitian ini menganalisis sebuah model dinamika virus dengan laju infeksi Beddington-DeAngelis dan respon imun CTL. Hal ini terbuktik bahwa pemecahan-pemecahan dengan nilai-nilai awal positif semuanya positif dan dibatasi. Stabilitas global titik ekuilibrium untuk model dinamika virus dieksplorasi dengan menggunakan fungsi Lyapunov. Dinamika global dari model ini ditentukan oleh nilai-nilai  bilangan reproduksi dasar R0. Hal ini membuktikan bahwa jika R0<1, terdapat keadaan tetap yang unik, keseimbangan bebas virus yang stabil asimtotik global. Jika R0>1, terdapat keadaan tetap lain, keseimbangan endemik yang stabil asimptotik secara global. Selain itu, kami menunjukkan bahwa respon CTL memiliki peran penting dalam pengendalian kepadatan partikel virus bebas dan sel yang terinfeksi. Simulasi-simulasi numerik disajikan untuk menggambarkan hasil-hasil.

 

A virus dynamics model with Beddington-DeAngelis infection rate and CTL immune response is analyzed. It is proved that the solutions with positive initial values are all positive and bounded. The global stability of equilibrium points for dynamics virus model are explored by using appropriate Lyapunov functions. The global dynamics of the model are determined by the values of the basic reproduction number R0. It is proved that if R0<1, there is a unique steady state, the virus-free equilibrium, which is globally asymptotically stable. If R0>1 there is another steady state, the endemic equilibrium, which is globally asymptotically stable. In addition, we show that the CTL response have important role in controlling of the density of free virus particles and of infected cells. Numerical simulations are presented to illustrate the results.


Keywords


Beddington-DeAngelis; CTL immune responses; global stability reproduction number; virus.

Full Text:

PDF

References


Adams BM, Banks HT, Davidian M, Kwon HD & Tran HT. 2004. Dynamic multidrug the-rapies for HIV: Optimal and STI control approaches. Math Biosci Eng 1:223–241.

Ciupe SM, Ribeiro RM, Nelson PW & Perelson AS. 2007. Modeling the Mecha-nisms of Acute Hepatitis B Virus Infection. J Theor Biol 247: 23-35.

Huang G, Ma WB & Takeuchi. 2009. Global properties of virus dynamics model with Beddington-DeAngelis functional response. Appl Math Lett 22:1690-1693.

Korobeinikov A. 2004. Global properties of basic virus dynamics models. Bull Math Biol.66:879–883.

Kurdhi NA. 2012. Analysis of a virus dynamics model with multiple infection. Proceeding of the Fifth International Symposium on Computational Science Vol. 1:185–197.

Kurdhi NA & Aryati L. 2011. Global asymptotic stability of virus dynamics models and the effects of CTL and antibody responses. Proceeding of the 6 SEAMS-GMU International Conference on Mathematics and Its Applications pp. 481-498.

Nagumo N. 1942. Uber die Lage der Integralkurven Gewohnlicher Differential Gleichungen. Proc.Phys-Math. Soc. Japan 24, 551 – 559.

Nowak MA & May RM. 2000. Virus Dynamics. Oxford University Press, Inc., New York.

Perelson AS, Kirschner DE & Boer RD. 1993. Dynamics of HIV infection of CD4+ T Cells. Math Biosci 114:81–225.

Pruss J, Zacher R & Schnaubelt R. 2008. Global asymptotic stability of equilibria in models for virus dynamics. Math Model Nat 3(7):126-142.

Yousfi N, Hattaf K & Rachik M. 2009. Analysis of a HCV model with CTL and antibody responses. Appl Math Sci.3(57):2835–2846.

Wang X, Tao Y & Song X. 2011. Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response. Springer Science.

Wodarz D. 2007. Killer Cells Dynamics. Mathematical and Computational Approaches to Immunolog. Springer-Verlag, New York.


Refbacks

  • There are currently no refbacks.