SINTESIS DAN KARAKTERISASI BIODIESEL DARI MINYAK KEMIRI SUNAN (Reutealis trisperma) DENGAN VARIASI KONSENTRASI KATALIS NAOH

Holilah -(1), TP Utami(2), D Prasetyoko(3),


(1) PT Kemiri Sunan Drajat, Paciran, Lamongan, Jawa Timur
(2) PT Kemiri Sunan Drajat, Paciran, Lamongan, Jawa Timur
(3) Laboratorium Energi dan Rekayasa, LPPM, ITS

Abstract

Sintesis biodiesel dari minyak Kemiri Sunan (Reutealis trisperma) (RTO) menggunakan NaOH sebagai katalis dengan variasi konsentrasi katalis yaitu 0,5; 1,0; 1,5 dan 2,0 wt% telah diteliti. Minyak kemiri sunan (Reutealis trisperma) adalah bahan baku yang menarik untuk produksi biodiesel. Biodiesel disintesis dengan dua tahap reaksi yaitu esterifikasi menggunakan katalis H2SO4 dan transesterifikasi dengan menggunakan katalis NaOH. Dalam penelitian ini, diteliti pengaruh konsentrasi katalis terhadap produk biodisel serta dan karakteristiknya. Hasil penelitian menunjukkan bahwa yield biodiesel meningkat seiring dengan meningkatnya konsentrasi katalis dari 0,5-1,0 wt%, selanjutnya dengan meningkatnya konsentrasi katalis dari 1,5-2,0 wt% membuat yield menurun. Yield optimum dicapai pada 84,7%. FAME (fatty  acid  methyl  ester) diperoleh dengan konsentrasi katalis 1 wt% pada kondisi reaksi 65°C, waktu reaksi 1 jam dan rasio metanol minyak 1:2 (wt/wt). Karakteristik biodiesel diamati dengan uji standart bahan bakar dan hasilnya dibandingkan dengan standart ASTM D6751-02. Karakteristik biodiesel yang disintesis dengan konsentrasi katalis NaOH 1% adalah angka asam (0,55 mg KOH/g), densitas (0,90 gr/cm3), viskositas pada 40°C (9,2 cSt), angka setana (54,5) dan residu karbon (0,24 wt%/wt).

 

This research was investigated bio diesel synthesis of Reutealis trisperma oil (RTO) by using NaOH as a catalist with variation of catalyst concentration as follow 0.5; 1.0; 1.5 and 2,0 wt% . Reutealis trisperma oil is an attractive raw material for  bio diesel production. It was produced by two steps of reactions, they are esterification by using H2SO4 catalyst and transesterification by using NaOH catalyst. This study examined the effect of catalyst concentration on the yield of biodiesel and their selected properties. The result showed, that the bio diesel yield  with catalyst concentration increasing from 0,5-1,0 wt%, increased, while increasing the concentration from 1,5-2,0 wt% makes the yield decreased. The optimum yield was obtained in 84,71%, and fatty  acid  methyl  ester (FAME)  was  obtained  with catalyst  concentration  1,0 wt% when the reaction condition was at 65°C and  time reaction was 1 hour  and  methanol to oil ratio was 1:2 (wt/wt). Bio diesel characteristic was evaluated  by standard fuel test and the result was compared to ASTM D6751-02 standard.  Synthesized Bio diesel characteristic with NaOH catalyst concentration of 1% resulted from acid number (0,55 mg KOH/g), density (0,90 gr/cm3), viscosity at 40°C (9,2 cSt), cetane number (54,5) and carbon residue (0,24 wt%/wt).

Keywords

bio diesel; Reutealis trisperma oil; transesterification; yield

Full Text:

PDF

References

Agarwal M, Chauhan G, Chaurasia SP & Singh K. 2012. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production, J Taiwan Inst Chem E 43: 89-94

Amani MA, Davoudi MS, Tahvildari K, Nabavi SM & Davoudi MS. 2013. Biodiesel production from Phoenix dactylifera as a new feedstock. Ind Crop Prod 43: 40-43

Arzamendi G, Campo I, Arguiñarena E, Sánchez M, Montes M & Gandía LM. 2007. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chem Eng J 134: 123–130

Barley AE. 1950. Industrial Oil And Fat Product Inter Scholate Pub. Ins. New York

Canakci M & Gerpen J. 1999. Biodiesel production via acid catalysis. AmSoc Agric Eng 42: 1203–10

Chitra P, Venkatachalam P & Sampathrajan A. 2005. Optimisation of experimental conditions for biodiesel production form alkali catalyzed transesterification of Jatropha curcas oil. Energ Sust Dev 9: 13–8

Choi CY & Reitz RD. 1999. A numerical analysis of the emissions characteristics of biodiesel blended fuels. J Eng Gas Turbine Power 121: 31–37

Demirbas A. 2007, Recent development in biodiesel fuels. Int J Green Energy 4: 15–26. Copyright © Taylor & Francis Group LLC

Dorado MP, Ballesteros E, López FJ & Mittelbach M. 2004. Optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Energ Fuel 18: 77-83

Hu J, Du Z, Li C & Min E. 2005. Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel 84: 1601–1606

Ikwuagwu OE, Ononogbu IC & Njoku OU. 2000. Production of biodiesel using rubber [Hevea brasil-iensis (Kunth. Muell. )] seed oil. Ind Crops Prod 12: 57-62

Junior JS, Mariano AP & Angelis DF. 2009. Biodegradation of biodiesel/diesel blends by Candida viswanathii. Afr J Biotechnol 8(12): 2774-2778

Kataren S. 1986. Pengantar Teknologi Minyak dan Lemak Pangan. UI Press. Jakarta

Knothe G, Dunn RO & Bagb MO. 1997. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels and Chemicals from Biomass. American Chemical Society Symposium Series No. 666. Washington DC USA. ACS. 172–208

Kumar R, Tiwari P & Garg S. 2013. Alkali transesterification of linseed oil for biodiesel production. Fuel 104 (February): 553–560

Lee S, Tanaka D, Kusaka J & Daisho Y. 2002. Effects of diesel fuel characteristics on spray and combustion in a diesel engine. JSAE Rev 23: 407–414.

Maman. 2009. Pola Penanaman Kemiri Sunan. Balai Penelitian Tanaman Pangan dan Industri

Meher LC, Dharmagadda VS & Naik SN. 2006. Optimization of alkali catalyzed transes-terification of pongamia pinnata for production of biodiesel. Bioresour Technol 97: 1392-1397.

Pearl GG. 2002. Animal Fat Potential for Bioenergy Use. Bioenergy, The Biennial Bioenergy Conference. Boise ID. 22–26 September

Peterson CL. 1986. Vegetable oil as a diesel fuel: status and research priorities. Trans ASAE 29(5): 1413-1422.

Wang L, He H, Xie Z, Yang J & Zhu S. 2007. Transesterification of the crude oil of rapeseed with NaOH in supercriticaland subcritical methanol. Fuel Process Technol 88: 477-481.

Wardana E. 2009. Kemiri Sunan. Balai Penelitian Tanaman Pangan dan Industri. Sukabumi

Vicente G, Coteron A, Martinez M & Aracil J. 1998. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind Crops Prod 8: 29–35

Vicente G, Martínez M & Aracil J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technol 92: 297-305

Xu Y & Hanna M. 2009. Synthesis and characterization of hazelnut oil-based biodiesel. Acs Sym Ser: Papers and Publications. Paper 114

Xue J, Grift TE & Hansen AC. 2011. Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15: 1098-1116

Yingying L, Houfang L, Wei J, Dongsheng L, Shijie L & Bin L. 2012. Biodiesel production from crude Jatropha curcas L. oil with trace acid catalyst. Chinese J Chem Eng 20(4): 740-746

Zhang Y, Dube MA, McLean DD & Kates M. 2003. Biodiesel production from waste cooking oil: economic assessment and sensitivity analysis. Bioresour Technol 90: 229-240

Zullaikah S, Lai CC, Ramjan S & Ju YSA. 2005. Two step acid catalyzed process from rice bran oil. Bioresour Technol 96: 1889–1896

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.