PENENTUAN INDEKS BIAS KACA TBZP TERDEDAH ION Nd3+ DENGAN METODE SUDUT BREWSTER

A Pramuda(1), A. Marzuki(2), Cari -(3), Wahyudi -(4), R. Susanto(5),


(1) STKIP PGRI Pontianak, Indonesia
(2) Program Studi Ilmu Fisika, Program Pascasarjana Universitas Sebelas Maret, Indonesia
(3) Program Studi Ilmu Fisika, Program Pascasarjana Universitas Sebelas Maret, Indonesia
(4) STKIP PGRI Pontianak, Indonesia
(5) Program Studi Ilmu Fisika, Program Pascasarjana Universitas Sebelas Maret, Indonesia

Abstract

Abstrak

__________________________________________________________________________________________

Kaca tellurite merupakan material yang sangat menjanjikan untuk aplikasi laser dan optika non linear. Pengukuran indeks bias merupakan salah satu bagian dari penentuan sifat fisik optik yang penting untuk mengestimasi sifat-sifat laser kaca. Penelitian ini bertujuan menentukan dan menganalisis indeks bias kaca berbasis tellurite TBZP Terdedah ion Nd3+ yang telah berhasil difabrikasi dengan teknik melt quenching dengan komposisi 55TeO2-2Bi2O3-(38-x) ZnO-5PbO-xNd2O3(% mol)(x=0,5; 1; 1,5; 2; 2,5). Indeks bias kaca diukur dengan metode sudut brewster pada mode tranverse magnetic (TM).  Pada mode TM dapat ditentukan besar sudut brewster dan nilai reflektansi minimum kaca. Hasil penelitian menunjukkan kaca TBZP terdedah ion Nd3+ yang telah berhasil dipabrikasi memiliki indeks bias kaca yang tergolong tinggi meningkat dari 1,825 ke 2,081 seiring meningkatnya konsentrasi modifier Nd2O3 dari 0,5 % mol ke 2,5 % mol. Penambahan kation pada jaringan struktur kaca memberikan pengaruh pada struktur kaca dan mengarah ke perubahan lokal dari distribusi ikatan Bridging Oxygen (BO) dan Non Bridging Oxygen (NBO). Penambahan konsentrasi Nd3+ menyebabkan terjadinya peningkatan pada nilai parameter sifat fisik lain seperti massa molar, massa jenis, volume molar, dan molar refraction.

 

Abstract

__________________________________________________________________________________________

Tellurite glass is a promising material for laser applications and non-linear optics. The measurement of the refractive index is a part of the  physical properties determination that is important for estimating the optical properties of glass laser. This research determined and analyzed the refractive index of tellurite-based glass TBZP dopedNd3+fabricated by melt quenching technique with composition 55TeO2-2Bi2O3-(38-x) ZnO-5PbO-xNd2O3(mol%)(x=0,5; 1; 1,5; 2; 2,5). The refractive index of glass was measured by the brewster angle method on tranverse magnetic mode (TM). On the TM mode it could be determined the brewster angle and minimum reflectance value of the glass. The results showed high refractive index of fabricated glassTBZP doped by Nd3+increasing from 1.825 to 2.081 with increasing concentrations of modifier Nd2O3from 0,5 %mol to 2,5 %mol. The addition of cations on the network structure of the glass  affected to the glass structure which lead to a local change of the distribution of Bridging Oxygen (BO) and Non Bridging Oxygen (NBO) bond. The addition of Nd3+ concentration caused an increasing of the value of the parameters of physical properties such as molar mass, density, molar volume, and molar refraction.

Keywords

refractive index; tellurite glass; brewster angle method; melt quenching technique.

Full Text:

PDF

References

Almeida RM.2005. Optical and Photonic Glasses. IMI for New Functionallity in Glass Leigh University.

Azkargorta, Iparraguirre, Balda R & Fernandez J. 2008. On The Origin of biochromatic laser emission in Nd3+ doped flouride glasses. J Optics Express.16(16): 11894-11906.

Burtan B, Reben M, Cisowskia J, Wasylak J, Nosidlaka N, Jaglarza J & Jarzabek B. 2011. Influence of Rare Earth Ion The Optical Tellurite of Tellurite Glass. J Acta Physica Polonica. 120(4): 579-581.

Chimalawong P, Kaewkhao J, Kittiauchawal T, Kedkaew C & Limsuwan P. 2010. Optical Properties of the SiO2-Na2O-CaO-Nd2O3 Glasses. Am J Applied Sci 7(4): 584-589.

Digonet & Michel JF. 2001. Rare Earth Doped Fibre Lasers and Amplifiers. New York: Marcel Dekker Inc.

El-Mallawany RAH. 2002. Tellurite Glasses Handbook: Physical Properties and Data. Florida: CRC Press

El-Mallawany RAH, Dirar AM & Ahmed IA. 2008. New Tellurite Glass: Optical Properties. J. Material Chem and Phys. 109: 291-296.

Fusari F. 2010. Continuous wave and Modelocked femtosecond novel bulk glass lasers operating around 2000 nm. Thesis. St Andrews: University of St AndrewsScotland.

Jiang LI, Yong YZ, Song WY, Bin LW, Bai PY, Ping HL & Kun GJ. 2008. Spectroscopic Properties And Judd Ofelt Theory Analysis Of Nd:YAG Transparent Laser Cheramic. J Inorganic Materials. 23(3): 429-432.

Lin H, Wang XY, Li CM, Li XJ, Tanabe S & Yu JY.2007. Spectral Power Distribution and Quantum Yields Of Sm3+-Doped Heavy Metal Tellurite Glass Under The Pumping Of Blue Lighting Emitting Diode. J. Spectrochimica Acta Part A 67: 1417–1420.

Marjanovie S. 2003. Characterization of New erbium-doped Tellurite Glasses and Fiber. J Non-Cryst Solids 322: 282-289

Marzuki A. 2007. Laser analysis of Nd3+ ion in flouroaluminat glasses. J Matematika dan Sains.12 (1): 32-37.

Massera J. 2009. Nucleation and Growth Behavior of Tellurite Based Glass Suitable for Mid Infrared Applications. Thesis. Graduate School Clemson University.

Meliegy E & Noort RV. 2012. Glasses And Glass Ceramics For Medical Applications. London: Springer Science And Business Media.

Mitschke F. 2009. Fiber Optics Physics and Technology.Berlin Heidelberg: Springer-Verlag.

Moustafa ES & Elkhateb F. 2012. The Estimation of the Oxide Ion Polarizability for B2O3-Li2O-Mo Glass System. Am J App Sci. 9 (3): 446-449.

Nazabal V, Todoroki S, Inoue S, Matsumoto T, Suehara S, Hondo T, Araki T & Cardinal T. 2003. Spectral Properties of Er3+ Doped Oxyfluoride Tellurite Glasses. J Non-Crystalline Solids 326&327: 359–363.

Pradeesh K, Oton CJ, Agotiya VK, Raghavendra M & Prakash GV.2008. Optical Properties Of Er3+ Doped Alkali Chlorophosphate Glasses for Optical Amplifiers. J. Optical Materials 31: 155–160.

Prakash GV, Rao DN & Bhatnagar AK. 2010. Linear Optical Properties of Niobium-based Tellurite Glasses. J. Solid State Commun.119: 39-44.

Reddy AA, Babu SS, Pradeesh K, Otton CJ & Prakash GV. 2011. Optical Properties Of Highly Er3+-Doped Sodium–Aluminium–Phosphate Glassesfor Broadband 1.5 µm Emission. J Alloys and Compounds 509: 4047–4052.

Rosmawati S, Sidek HAA, Zainal AT & Mohd ZH. 2007. Preparation and Physical Studies on Binary Zinc Tellurite Glass System. J Solid State Sci Technol. 14(2): 95-99.

Ruvalcaba CC, Zayas ME, Lozada MR, Peres. TM, Dias CG & Stillo SJ. 2005. Optical And Thermal Analysis Of Nd Doped ZnO-CdO-TeO2 Glasses. Maringa: Department of Physics University of Estadual De Maringa Brasil.

Saleh B & Teich M. 2007. Fundamental of Photonics2nd Ed. New Jersey: John Wiley and Son Inc.

Shelby JE. 2005. Introduction to Glass Science and Technology. Cambridge: The Royal Society of Chemistry.

Sidebottom DL. 1997. Structure and Optical Properties Rare Earth-doped Zinc Oxyhalide Tellurite Glasses. J. Non-Cryst. Solids 222: 282-289.

Shoundararajan G. 2009. Optical Characterization of Rare Earth Doped Glass. Thesis. Graduate Studies,Department of Electrical and Computer Engineering University of Saskatchewan Saskatoon Canada.

Sulhadi, Sahar MR & Rohani. 2004. Kajian Struktur Kaca Zinc-Tellurite. Prosiding Seminar Nasional Rekayasa Kimia. Universitas Diponegoro Semarang.

Suri N, Bindra KS, Kumar P, Kamboj MS & Thangaraj R. 2006. Thermal Investigations Ion Bulk Se (80-x) Te2OBix Chalcogenide Glass. J Ovonic Rese. 2(6): 111-118.

Thomas RL, Vasuja, Hari M, Nampoori VPN, Radhakrishnan P &Thomas S. 2011. Optical Non-Linearity in ZnO Doped TeO2 Glasses. J. Optoelectronics and Advanced Materials. 13(5): 523-527.

Wang G, Dai S, Zhang J, Xu S, Hu L & Jiang Z. 2005. Effect Of F- Ion On Physical and Spectroscopic Properties Of Yb3+ Doped TeO2 Based Glasses. J. Luminescence 113: 27-32.

Wilson K. 2011. Recent Development in High-Data Rate Optical Communications at JPL. California: Jet Propulsion Laboratory. NASA Technical Reports Server.

Xu S, Yang Z, Dai S, Yang J, Hu L & Jiang Z. 2003. Spectral properties and thermal stability of Er doped oxyfluoride silicate glasses for broadband optical amplifier. J Alloys Compounds 361: 313-319.

Yamamoto Y, Matsumoto S & Shimodaira N. 2009. Mechanism Surface Colouration in Tellurite Glass During Press Forming. J Glass Sci Technolo. 50 (4): 203-205.

Yousef E, Houtzel M & Rüssel C. 2007. Effect of ZnO and Bi2O3 Addition on Linear and Non-linear Optical Properties of Tellurite Glasses. J Non-Crystalline Solid.353: 333-338.

Zhang J, Dai S, Wang G, Xu S, Zhang L &Hu L. 2004. Spectroscopic Properties Of Neodymium-Doped Tellurite Glass Fiber. Chinese Optics Letters 2(9): 546-548

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.