UJI TOLERANSI TANAMAN TEMBAKAU (Nicotiana tabacum L.) TERHADAP CEKAMAN KADMIUM (Cd), TIMBAL (Pb), DAN TEMBAGA (Cu) PADA KULTUR CAIR

S Rosidah, YU Anggraito, KK Pukan

Abstract


Penelitian ini menyelidiki respon fisiologis, anatomis, dan morfologis tanaman tembakau (Nicotiana tabacum L.) terhadap cekaman logam berat Cu, Cd, dan Pb. Sampel yang digunakan adalah tembakau umur 3-4 minggu yang dikecambahkan secara in vitro dan kemudian dipapar logam berat selama 14 hari. Desain penelitian yang digunakan yaitu rancangan acak lengkap dengan satu faktor, yaitu konsentrasi logam Cu (0 M, 50 M, 100 M, 150 M & 200 M), Cd (0 M, 50 M, 100 M, 200 M & 300 M), dan Pb (0 M, 5 M, 20 M, 50 M & 100 M). Parameter yang digunakan: pertambahan panjang akar, pertambahan jumlah akar, akumulasi logam dalam akar, lokalisasi penimbunan dalam akar, dan warna daun. Bertambahnya konsentrasi logam menghambat pertumbuhan akar dan menyebabkan deposit logam pada jaringan akar dan gejala klorosis. Hasil uji Atomic Absorbtion Spectrophotometry (AAS) menunjukkan semakin besar konsentrasi semakin banyak akumulasi logam pada jaringan akar. Akan tetapi, akumulasi Cd pada konsentrasi 200 M lebih besar dibanding pada konsentrasi 300 M. Analisis kualitatif membuktikan bahwa cekaman Cu tidak berpengaruh signifikan terhadap warna daun, sedangkan pada cekaman Cd (100, 150 dan 200 M) dan Pb (150 M) daun mengalami klorosis. Pada konsentrasi logam yang rendah seperti 50 M Cu, 50 M Cd, dan 5 M Pb tidak berbeda nyata dengan kontrol. Dengan demikian disimpulkan bahwa tembakau mampu mentoleransi cekaman logam pada konsentrasi yang rendah.

This research investigated the physiological, anatomical, and morphological responses of tobacco (Nicotiana tabacum L.) on stresses of heavy metals Cu, Cd, and Pb. The samples were 3- to 4-week tobacco plants germinated in vitro and then were exposed to heavy metals for 14 days. This study used a completed random design with single factor, i.e. the concentrations of Cu (0 M, 50 M, 100 M, 150 M & 200 M), Cd (0 M, 50 M, 100 M, 200 M & 300 M), and Pb (0 M, 5 M, 20 M, 50 M & 100 M. Further, stress response was analyzed based on several parameters including root elongation, root number, metal accumulation and localization in roots, and leaf color. The increasing metals had caused root growth inhibition, metal deposit in root tissues, and chlorosis symptom. Atomic Absorption Spectrosphotometry (AAS) analysis results showed constant trend that the higher concentration of heavy metals the higher accumulation of the metals. Yet 200 M of Cd accumulated more than 300 M Cd, so was suggested that the concentration was not the absolute factor in determining metal absorption. On the other hand, qualitative analysis has proven that chlorosis was not found in Cu treatment but consistently observed in high concentrations of Cd (100 M up to 200 M) and Pb (100 M). However, lower metal concentration such as 50 M Cu, 50 M Cd and 5 M Pb as well as the control treatment were not significantly different at the level of 5%. Therefore, it can be concluded that tobacco was capable to tolerate low concentration of metal stress.


Keywords


heavy metal accumulation; liquid culture; Nicotiana tabacum

Full Text:

PDF

References


Alaoui-Soss B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, & Badot PM. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166 :12131218.

Alkhatib R, Creamer R, Lartey RT, & Ghoshroy S. 2011. Effect of lead (Pb) on the systemic movement of RNA viruses in tobacco (Nicotiana tabacum var. Turkish). Plant Cell Rep 30:14271434

Anggraito YU, Suharsono, Pardal SJ, & Sopandie D. 2012. Transformasi genetik Nicotiana benthamiana L dan kedelai dengan gen MaMt2 penyandi metallothionein Tipe II dari Melastoma malabathricum L. Forum Pascasarjana 35:179-188.

Arduini I, Godbold DL, & Onnis A. 1995. Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. Seedlings. Tree Physiol 15: 411-415.

Baranowska-Morek A & Wierzbicka M. 2004. Localization of lead in root tip of Dianthus carthusianorum. Acta Biol Cracoviensia Series Botanica 46: 4556.

Cobbet CS. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol, 123: 825832.

Ebbs S & Uchil S. 2008. Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Phytoscienc 46: 49-55

Fry SC, Miller JC, & Dumville JC. 2002. A proposed role for copper ions in cell wall loosening. Plant Soil 247: 5767.

Ghelich SI, Zarinkamar, & Fatemeh. 2013. Histological and ultrastructure changes in Medicago sativa in response to lead stress. Phyto J 2: 20-29

Gori P, Schiff S, Santandrea G, & Bennici A. 1998. Response of in vitro cultures of Nicotiana tabacum L. to copper stress and selection of plants from Cu-tolerant callus. Plant Cell Tiss Organ Cult 53: 161169.

Hidayati N. 2005. Fitoremediasi dan potensi tumbuhan hiperakumulator [ulasan]. Hayati 12: 35-40.

Jiang W, Liu D, & Liu X. 2001. Effects of copper on root growth, cell division and nucleolus of Zea mays. Biol Plant 44:105-109.

Kopittke P, Asher CJ, Kopittke RA, & Menzies NW. 2007. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Envir Poll 150: 280-287.

Krystofova O, Zitka O, Krizkova S, Hynek D, Shestivska V, Adam V, Hubalek V, Mackova M, Macek T, & Zehnalek J. 2012. Accumulation of cadmium by transgenic tobacco tlants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int. J. Electrochem. Sci. 7: 886-907

Kumar G & Tripathi R. 2008. Lead-induced cytotoxicity and mutagenicity in grass pea. Turk J Biol 32: 73-78.

Kurtyka R, Ma?kowski E, Kita A, & Karcz W. 2008. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish of Environ Study 17:51-56.

Lequeux H, Hermans C, Lutts S, & Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48: 673-682.

Liu X P, Peng K J, Wang A G, Lian C L, & Shen Z G. 2010. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 78:11361141.

Luo Y, Wei Q, Huang M, Xu Y, & Chen F. 2006. Isolation of a genomic DNA for Jatropha curcas ribosome inactivating protein and its tobacco transformation. J Shanghai Univ 10(5): 461-464.

Mahmood T, Islam KR, & Muhammad S. 2007. Toxic effects of heavy metal on early growth and tolerance of cereal crops. Pak J Bot 39: 451-462

Maheshwari P & Kovalchuk I. 2011. Combination of ammonium nitrate, cerium chloride and potassium chloride salts improves Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum. Plant Biotech Rep [terhubung berkala]. http://springerlink.com diakses pada 25 April 2013

Manara A. 2012. Plants responses in heavy metal toxicity. Di dalam: Furini A, editor. Plants and heavy metals. SpringerBriefs in Biometals: 27-53

Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, & Khan NA. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American J Plant Sciences 3: 1476-1489.

Poschenrieder C, Gunse B, & Barcelo J. 1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90: 1365-1371.

Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina M, Alonso FJ, Forchetti SM, Tigier H, & Valpuesta V. 2000. A Tomato Peroxidase Involved in the synthesis of lignin and suberin. Plant Physiol 122: 11191127

Piano LD, Abet M, Sorrentino C, Barbato L, Sicignano M, Cozzolino E, & Cuciniello A. 2008. Uptake and distribution of lead in tobacco (Nicotiana tabacum L.). J Applied Bot Food Qual 82:21-25.

Ratheesh CP, Abdussalam A, Nabeesa S, & Puthur JT. 2010. Distribution of bio-accumulated Cd and Cr in two Vigna species and the associated histological variations. J Stress Physiol Biochem 6: 4-12.

Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, & Polle A. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and dfferentiation in scots pine roots. Plant Physiol 127: 887898.

Sabtanto JS & Suhandi. 2005. Pendataan sebaran unsur merkuri pada wilayah pertambangan gunung pani dan sekitarnya Kabupaten Pohuwato, Provinsi Gorontalo. Hasil Kegiatan Subdit Konservasi TA.

Sharma P & Dubey RS. 2005. Lead toxicity in plants. Braz J Plat Physiol 17:35-52.

Sriprang R & Murooka Y. 2007. Accumulation and detoxification of metals by plants. Di dalam: Singh SN, Triphati Rd editor. Environmental Bioremediation Technologies. Springer : 77-100.

Szllsi R, Klmn E, Medvegy A, Pet A, & Varga SI. 2011. Studies on oxidative stress caused by Cu and Zn excess in germinating seeds of Indian mustard (Brassica juncea L.) Acta Biol Szeg 55:175-178.

Taiz L & Zeiger E. 2010. Plant Physiology. Sinauer Associates Inc. Sunderland

Tistama R, Widyastuti U, Sopandie D, Yokota A, Akashi K, & Suharsono. 2012. Physiological and biochemical responses to aluminium stress in the root of a biodiesel plant Jatropha curcas L. Hayati 19:37-38.

Wann FB. 1930. Chlorosis Yellowing of Plants: Cause and Control. Utah: UAES Circulars

Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, & Goto F. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25: 365373

Zhang J, Zhang X, Duan Y, & Han Y. 2013. Construction of a phosphate transporter gene expression vector and its usage for tobacco transformation. Russ J Plant Physiol 60:290-294.

Zou J, Yue J, Jiang W, & Liu D. 2012. Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var Agrogarium L. Acta Biol Crac 54:129-141.


Refbacks

  • There are currently no refbacks.