PERSAMAAN SCHRODINGER D-DIMENSI BAGIAN SUDUT POTENSIAL POSCHL-TELLER HIPERBOLIK TERDEFORMASI Q PLUS ROSEN-MORSE TRIGONOMETRI MENGGUNAKAN METODE NIKIFOROV-UVAROV

S. Suparmi, C. Cari, D. Kusumawati

Abstract


Metode Nikivarof Uvarov merupakan metode penyelesaian persamaan diferensial orde dua dengan mengubah persamaan diferensial orde dua yang umum (persamaan Schrodinger) menjadi persamaan diferensial tipe hipergeometrik melalui substitusi variabel yang sesuai untuk memperoleh eigen value dan fungsi gelombang bagian sudut. Penelitian ini merupakan studi literatur untuk menyelesaikan persamaan Schrodinger D-dimensi bagian sudut dengan potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU). Pada penelitian ini bertujuan untuk mengetahui bagaimana fungsi gelombang bagian sudut persamaan schrodinger D-dimensi untuk potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU).

Nikivarof Uvarov is a method to solve second order differential equations by changing general second order differential equation to hyper-geometric differential equation type through substituting relevant variable to obtain eigenvalues and the angle of wave function. This is a literature study to solve the D-dimensional Schrodinger equation with a corner section q Deformed Hyperbolic Poschl Teller plus q Deformed Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU). This study aims to determine the way the angle of wave function of D-dimensional Schrodinger equation for q-Deformed Hyperbolic Poschl Teller plus q Deformed Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU).


Keywords


D-dimensional Schrodinger equation; q-Deformed Hyperbolic Poschl Teller plus q Deformed Trigonometric Rosen-Morse Potential; Nikiforov Uvarov (NU)

Full Text:

PDF

References


Awoga OA & Ikot AN.2012. Approximate solution of Schrodinger Equation in D dimensions for Inverted Generalized Hyperbolic Potential. Pranama Journal of Physics 79(3): 345-356

Akbarich AR & Motavali H. 2008. Exact Solutions of the Klein-Gordon Equation for the Rosen-Morse type Potentials via Nikiforov-Uvarov Method. Modern Physics Letters A 23, Issue 35: 3005-3013 (DOI: http://dx.doi.org/10.1142/S0217732308026686)

Cari & Suparmi. 2012. Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential with the Pschl-Teller Non-central potential Using NU Method. IOSR Journal of Applied Physics (IOSR-JAP) 2 (3): 13-23 (ISSN: 2278-4861).

Chun-Sheng J, Yun S and Yun L. 2002. Complexifield Poschl-Teller II Potential Model. Physics Letter A. 305: 231-238

Dutra AdeS. 2008. Mapping Deformed Hyperbolic Potentials into Nondeformed Ones. UNESP- Campus de Guaratinguerta-DFQ, Brasil.

Greiner W. 2000. Relativistic Quantum Mechanics, Wave Equation, Third edition. Berlin: Springer.

Hammed RH. 2012. Approximate Solution of Scrodinger Equation With Manning-Rosen Potential in Two Dimensions by using the shifted 1/N expansion method. Journal of Basrah Researches ((Sciences)) 38 (1), A(2012).

Hamzawi M & Rajabi AA. 2012. Exact solutions of the Dirac equation for the new ring-shaped non-central harmonic oscillator potential. The European Physical Journal Plus 2013. (DOI 10.1140/epjp/i2013-13029-9).

Ikhdair SM & Ramazan S. 2008. Solution of the D-dimensional Klein-Gordon equation with equal scalar and vector ring shaped pseudoharmonic potential. Int. J. Mod. Phys. C 19(09): 1425-1442 (doi: 10.1142/S0129183108012923)

Ikot AN & Akpabio LE. 2010. Approximate Solution of the Schrdinger Equation with Rosen-Morse Potential Including the Centrifugal Term. Applied Physics Research 2(2): 202-208.

Nikiforov AF & Uvarov VB.1988. Special Function of Mathematical Physics. Basel: Birkhauser.

Suparmi. 2011. Mekanika Kuantum I. Surakarta: Jurusan Fisika MIPA Universitas Sebelas Maret.

Suparmi. 2011. Mekanika Kuantum II. Surakarta: Jurusan Fisika MIPA Universitas Sebelas Maret

Xian-Quan HU, Guang LUO, Zhi-Min WU, Lian-Bin NIU & Ana-Yan MA. 2010. Solving Dirac Equation Alt New Ring-Shaped Non-Spherical Harmonic Oscillator Potential. Journal of Communication Theoritical Physics 53 (2): 242-246.


Refbacks

  • There are currently no refbacks.