EKSISTENSI DAN KETUNGGALAN SOLUSI PERSAMAAN GELOMBANG AIRY MENGGUNAKAN PENDEKATAN SEMIGRUP C_0

M Kiftiah, W B Partiwi, F Fran, B Prihandono

Abstract


Semigrup merupakan salah satu metode yang digunakan untuk menunjukkan Masalah Nilai Awal (MNA) dari persamaan diferensial di Ruang Hilbert bersifat well posed. MNA dalam abstrak ini disebut Masalah Cauchy Abstrak. Semigrup pada Ruang Hilbert H merupakan keluarga operator linear pada Ruang Hilbert H yang tertutup terhadap komposisi dan memiliki elemen identitas. Lebih lanjut, jika semigrup mempunyai turunan kanan di maka turunannya disebut infinitesimal generator. Dalam hal ini, Teorema Lumer Philips memberikan ekivalensi antara infinitesimal generator dengan semigrup. Dalam hal tertentu semigrup dapat diperluas menjadi grup. Teorema Stone memberikan ekuivalensi antara generator dengan grup. Secara teknis, Teorema Lumer Philips mengatakan MNA bersifat well posed jika dan hanya jika infinitesimal generatornya bersifat m-dissipative. Selanjutnya, pendekatan semigrup diaplikasikan pada persamaan Airy.

Semigroup is one method used to show the Initial Value Problems (MNA)of differential equations in Hilbert space is well posed. In this research, MNA called Abstract Cauchy Problems. Semigroup is a family of linear operators on Hilbert Space H which is closed under composition and has an identity element. Furthermore, if semigrup has a right derivative at then it is called infinitesimal generator. In this case, the Lumer Philips Theorem provides the equivalence between infinitesimal generator and semigroup. In certain cases, semigroup can be expanded into a group. Stone Theorem gives the equivalence between generator and group. Then Lumer Philips Theorem said the MNA is well posed if and only if the infinitesimal generator is m-dissipative. Furthermore, semigroup approach was applied to the Airy equation.


Keywords


generator; semigroup; Airy equation

Full Text:

PDF

References


Banasiak J & Arlotti L. 2006. Pertubation of Positive Semigroups with Applications. Springer. New York.

Escauriaza L, Kenig CE, Ponce G & Vega L. 2007. On Uniqueness Properties of Solutions of The K-Generalized KDV Equastions. Journal of Functional Analysis 244. 504-535. doi:10.1016/j.jfa.2006.11.004

Gonzlez-Gaxiola O & Santiago JA. 2012. The Black Scholes Operator as The Generator of C_0-Semigroup And Application. International Journal of Pure and Applied Mathematics 76(2). 191-200.

Hundertmark D, Meyries M, Machinek L, & Schubelt R. 2013. Operator Semigroup and Dispersive Equations. 16th Internet Seminar on Evolution Equastions. Karlsruhe. Germany..

Pazy A. 1983. Semigroup of Linear Operator and Applications to Partial Differential Equations. Springer. New York.

Tuscnak M. 2004. Wellposedness, Controllability and Stabilizability of System Governes by Partial Differential Equations. Verlag. Berlin.

Vrabie II. 2003. C_0 Semigroup and Applications. Elsevier. Amsterdam.


Refbacks

  • There are currently no refbacks.