THICKNESS DEPENDENCE OF MAGNETIC SWITCHING DYNAMICS OF BARIUM-FERRITE AS A HIGH-DENSITY PERPENDICULAR MAGNETIC STORAGE MEDIA

P. P. Aji(1), F. S. Rondonuwu(2), N. A. Wibowo(3),


(1) Department of Physics, Universitas Kristen Satya Wacana
(2) Department of Physics Education, Universitas Kristen Satya Wacana
(3) Department of Physics, Universitas Kristen Satya Wacana

Abstract

Micromagnetic study of material thickness dependence of Barium-ferrite nano-dot magnetization dynamics has been performed. The used materials characteristics in this research represent the properties of Barium-ferrite. Barium-ferrite was modeled as a nano-dot with a surface area of 50 × 50 nm2 and its thickness varies from 5 nm to 100 nm. This nano-dot was simulated using micromagnetic simulator software by solving Landau-Lifshitz-Gilbert equation. According to this study, obtained that the Barium-ferrite nano-dot has excellent thermal stability. Magnetization rate of this nano-dot decreases exponentially with the increase of thickness. The fastest magnetization rate observed in 5 nm of nano-dot thickness, meanwhile 45 nm for the slowest rate. Magnetization reversal mode of this Barium-ferrite nano-dot is dominated by domain wall nucleation and propagation. During the propagation of the domain wall, the exchange interaction becomes the main aspect compared to the other contributed energies.

Keywords

Domain wall; Magnetic field; Magnetization; Switching field

Full Text:

PDF

References

Alebrand, S., Gottwald, M., Hehn, M., Steil, D., Cinchetti, M., Lacour, D., … Mangin, S. (2012). Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Applied Physics Letters, 101(16), 162408.

Augustine, C., Raychowdhury, A., Behin-Aein, B., Srinivasan, S., Tschanz, J., De, V. K., & Roy, K. (2011). Numerical analysis of domain wall propagation for dense memory arrays (p. 17.6.1-17.6.4). IEEE.

Azizah, U. M. N., Trihandaru, S., & Wibowo, N. A. (2016). Micromagnetic study of exchange interaction effect on magnetization reversal mode of CoFeAl (p. 030014).

Cho, J., Jung, J., Cho, S.-Y., & You, C.-Y. (2015). Effect of annealing temperature on exchange stiffness of CoFeB thin films. Journal of Magnetism and Magnetic Materials, 395, 18–22. https://doi.org/10.1016/j.jmmm.2015.06.073

Herianto, N. A., Rondonuwu, F. S., & Wibowo, N. A. (2015). Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation. Smart Science, 3(1), 16–20. https://doi.org/10.1080/23080477.2015.11665632

Hou, Y., & Krishnan, K. M. (2012). Thickness-dependent magnetization reversal behavior of lithographic IrMn/Fe ring structures. Journal of Applied Physics, 111(7), 07B905. https://doi.org/10.1063/1.3672827

Hui, Y., Cheng, W., Yan, P., Chen, J., & Miao, X. (2015). Thickness dependence of magnetic properties in La?Co substituted strontium hexaferrite films with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 390, 56–60. https://doi.org/10.1016/j.jmmm.2015.04.081

Jung, S.-W., Kim, W., Lee, T.-D., Lee, K.-J., & Lee, H.-W. (2008). Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Applied Physics Letters, 92(20), 202508. https://doi.org/10.1063/1.2926664

Kim, C., Loedding, T., Jang, S., Zeng, H., Li, Z., Sui, Y., & Sellmyer, D. J. (2007). FePt nanodot arrays with perpendicular easy axis, large coercivity, and extremely high density. Applied Physics Letters, 91(17). https://doi.org/10.1063/1.2802038

Kim, J.-H., Lee, J.-B., An, G.-G., Yang, S.-M., Chung, W.-S., Park, H.-S., & Hong, J.-P. (2015). Ultrathin W space layer-enabled thermal stability enhancement in a perpendicular MgO/CoFeB/W/CoFeB/MgO recording frame. Scientific Reports, 5(1). https://doi.org/10.1038/srep16903

Krone, P. (2011). Magnetization Reversal Processes of Nanostructure Arrays (Dissertation). Retrieved from http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend%5bid%5d=urn:nbn:de:bsz:ch1-qucosa-71358

Lisfi, A., & Lodder, J. C. (2002). Relation between the microstructure and magnetic properties of BaFe12O19 thin films grown on various substrates. Journal of Magnetism and Magnetic Materials, 242–245, Part 1, 391–394. https://doi.org/10.1016/S0304-8853(01)01233-1

Liu, Y., Yu, T., Zhu, Z., Zhong, H., Khamis, K. M., & Zhu, K. (2016). High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 410, 123–127. https://doi.org/10.1016/j.jmmm.2016.02.099

Ma, Y., & Liu, B. (2008). Lube Depletion Caused by Thermal-Desorption in Heat Assisted Magnetic Recording. IEEE Transactions on Magnetics, 44, 3691–3694. https://doi.org/10.1109/TMAG.2008.2001670

Mansuripur, M., & Connell, G. A. N. (1984). Energetics of domain formation in thermomagnetic recording. Journal of Applied Physics, 55(8), 3049. https://doi.org/10.1063/1.333298

Metaxas, P. J., Jamet, J. P., Mougin, A., Cormier, M., Ferré, J., Baltz, V., … Stamps, R. L. (2007). Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt / Co / Pt Films with Perpendicular Anisotropy. Physical Review Letters, 99(21). https://doi.org/10.1103/PhysRevLett.99.217208

Mihai, A. P., Whiteside, A. L., Canwell, E. J., Marrows, C. H., Benitez, M. J., McGrouther, D., … Moore, T. A. (2013). Effect of substrate temperature on the magnetic properties of epitaxial sputter-grown Co/Pt. Applied Physics Letters, 103(26), 262401. https://doi.org/10.1063/1.4856395

Purnama, B., Koga, M., Nozaki, Y., & Matsuyama, K. (2009). Stochastic simulation of thermally assisted magnetization reversal in sub-100 nm dots with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 321(9), 1325–1330. https://doi.org/10.1016/j.jmmm.2008.12.003

Purnama, B., Prihanto, H. S. B. R., Artono, D. S. (2013). Karakteristik Magnetik Lapisan Tipis Ni-Fe Sebagai Flat Core Flux Gate Sensor. Jurnal Pendidikan Fisika Indonesia, 9(2). https://doi.org/10.15294/jpfi.v9i2.3039

Sadnawanto, W., -, C., & Purnama, B. (2014). Modifikasi Model Thermally Pada Heat Assisted Magnetisasi Reversal Nano Partikel Magnetik. Jurnal MIPA, 37(2), 136–140.

Schrefl, T., Fidler, J., Suess, D., Scholz, W., & Tsiantos, V. (2006). Micromagnetic Simulation of Dynamic and Thermal Effects. In Y. Liu, D. J. Sellmyer, & D. Shindo (Eds.), Handbook of Advanced Magnetic Materials (pp. 128–146). Boston, MA: Springer US. Retrieved from http://link.springer.com/10.1007/1-4020-7984-2_4

Shepley, P. M., Rushforth, A. W., Wang, M., Burnell, G., & Moore, T. A. (2015). Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain. Scientific Reports, 5, 7921. https://doi.org/10.1038/srep07921

Shimizu, O., Murata, Y., Kurihashi, Y., Harasawa, T., Asai, M., Sueki, M., & Noguchi, H. (2012). Long-Term Archival Stability of Barium Ferrite Magnetic Tape. Journal of the Magnetics Society of Japan, 36(1_1), 1–4. https://doi.org/10.3379/msjmag.1112R001

Waseda, K., Doi, R., Purnama, B., Yoshimura, S., Nozaki, Y., & Matsuyama, K. (2008). Heat-Assisted Magnetization Reversal Using Pulsed Laser Irradiation in Patterned Magnetic Thin Film With Perpendicular Anisotropy. IEEE Transactions on Magnetics, 44(11), 2483–2486. https://doi.org/10.1109/TMAG.2008.2003068

Woo, S., Litzius, K., Krüger, B., Im, M.-Y., Caretta, L., Richter, K., … Beach, G. S. D. (2016). Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nature Materials, 15(5), 501–506. https://doi.org/10.1038/nmat4593

Wood, R. (2009). Future hard disk drive systems. Journal of Magnetism and Magnetic Materials, 321(6), 555–561. https://doi.org/10.1016/j.jmmm.2008.07.027

Zhang, G., Li, Z., Wang, X., Nie, Y., & Guo, G. (2015). Shape-tuned dynamic properties of magnetic nanoelements during magnetization reversal. Journal of Magnetism and Magnetic Materials, 385, 402–406. https://doi.org/10.1016/j.jmmm.2015.03.043

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License