Taxonomic Approach for Species Diversity of Yeasts and Yeasts-like Fungi through D1/D2 Region of Large Subunit Ribosomal DNA Sequences

I Nyoman Sumerta(1), Atit Kanti(2),


(1) Indonesian Culture Collection (InaCC), Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI)
(2) Indonesian Culture Collection (InaCC), Microbiology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI)

Abstract

The identification of yeasts or yeasts-like fungi and verify their diversity are principal aspect for bioindustry and ecosystem sustainability. Taxonomic approach provides identification tool to ensure the taxonomic position of yeasts and yeasts-like fungi which definitely set to utilization concerns. The aim of this study is to understanding the taxonomic position of yeasts and yeasts-like fungi from the distinctive of its sequences relationship. Yeasts and yeasts-like fungi strains were isolated through various culture dependent methods from natural resources samples of Karimun Besar Island, Province of Riau Islands, Indonesia. The identification process was performed through amplifying the accurate DNA-based in D1/D2 region of large subunit (26S) ribosomal DNA. As the result, a total of 85 isolates of yeasts and yeasts-like fungi were obtained with 16 closest related taxa through phylogenetic tree construction. Ascomycetous was the predominating group representing 91% of the total isolates sequences followed by Basidiomycetous (8%) and Zygomycetous (1%). The black yeasts (yeasts-like) known as Aureobasidium melanogenum was predominant species with represent to 54% of total isolates and present in particular habitat. Taxonomically, there are six isolates are represent to be novel taxa candidates which pretend to enhance genetic resources of yeasts and yeasts-like fungi especially from Indonesia. In addition, this information provides specific technique to reach specific yeasts or yeasts-like fungi species in nature by managing the sample collection and culture methods.

Keywords

Aureobasidium; D1/D2 ribosomal DNA; Karimun Besar; Taxonomic; Yeasts and yeasts-like fungi

Full Text:

PDF

References

Aidoo, K. E., Nout, M. J. R. & Sarkar, P. K. (2006). Occurrence and function of yeasts in asian indigenous fermented foods. FEMS Yeast Research 6, 30–39.

Babic, M. N., Zalar, P., Zenko, B., Dzeroski, S. & Gunde-Cimerman, N. (2016). Yeasts and yeast-like fungi in tap water and groundwater and their transmission to household appliances. Fungal Ecology 20, 30-39.

Bhadra, B., Rao, R. S., Singh, P. K., Sarkar, P. & Shivaji, S. (2008). Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Current Microbiology 56, 489–494.

Biedunkiewicz, A., Dynowska, M., Ejdys, E. & Sucharzewska, E. (2013). Species diversity of yeast-like fungi in some eutrophic lakes in Olsztyn. Acta Mycologica 48 (1), 61–71.

Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry 43, 1-8.

Buijs, N. A., Siewers, V. & Nielsen, J. (2013). Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology 17, 480-488.

Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. & Zhang, T. (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology 82, 793–804.

Fell, J. W, Boekhout, T., Fonseca, A., Scorzetti, G. & Statzell-Tallman, A. (2000). Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology 50, 1351–1371.

Rich, J. O., Manitchotpisit, P., Peterson, S. W., Liu, S., Leathers, T. D. & Anderson, A. M. (2016). Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase. Biotechnology Letter 38, 863–870.

Kanti, A., (2015). Carboxymethyl cellulose hydrolyzing yeast isolated from South East Sulawesi, Indonesia. Jurnal Biologi Indonesia 11(2), 285–294.

Katoh, K. & Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology Evolution 30(4), 772-80.

Konishi, M., Nagahama, T., Fukuoka, T., Morita, T., Imura, T., Kitamoto, D. & Hatada, Y. (2011). Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62, Journal of bioscience and bioengineering 111(6), 702-705.

Kurtzman, C. P., Fell, J. W. & Boekhout, T. (2011). The Yeast: A Taxonomyc Study 5th Edition. USA. Elseiver B.V.

Kurtzman, C. P. & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie van Leeuwenhoek 73: 331–371.

Kurtzman, C. P. & Suzuki, M. (2010). Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51, 2–14.

Li, X. Y., Liu, Z. Q. & Chi, Z. M. (2008). Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology. Bioresource technology 99(14), 6386-6390.

Leathers, T. D., Price, N. P. J., Bischoff, K. M., Manitchotpisit, P. & Skory, C. D. (2015). Production of novel types of antibacterial liamocins by diverse strains of Aureobasidium pullulans grown on different culture media. Biotechnology Letter 37(10), 2075-2081.

Liu, Y. Y., Chi, Z., Wang, Z. P., Liu, G. L. & Chi, Z. M. (2014). Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. Journal of industrial microbiology & biotechnology 41(9), 1329-1337.

Ma, Z. C., Liu, N. N., Chi, Z., Liu, G. L. & Chi, Z. M. (2015). Genetic modification of the marine-isolated yeast Aureobasidium melanogenum. Marine Biotechnology 17(4), 511-522.

Maris, A. J., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A., Wisselink , H. W., Scheffers, W. A., van Dijken, J. P. & Pronk, J. T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4), 391-418.

Morais, C. G., Cadete, R. M., Uetanabaro, A. P. T., Rosa, L. H., Lachance, M. A. & Rosa, C. A. (2013). D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genetics and Biology 60, 19-28.

Nielsen, J., Larsson, C., van Maris, A. & Pronk, J. (2013). Metabolic engineering of yeast for production of fuels and chemicals. Current Opinion in Biotechnology 24, 398–404.

Packeiser, H., Lim, C., Balagurunathan, B., Wu, J. & Zhao, H. (2013). An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Applied Biochemistry and Biotechnology 169, 695–700.

Pantelides, I. S., Christou, O., Tsolakidou, M. D., Tsaltas, D. & Ioannou, N. (2015). Isolation, identification and in vitro screening of grapevine yeasts for the control of black Aspergilli on grapes. Biological Control 88, 46–53.

Peterson, S. W., Manitchotpisit, P. & Leathers, T. D. (2013). Aureobasidium thailandense sp. nov. isolated from leaves and wooden surfaces. International Journal of Systematic and Evolutionary Microbiology 63, 790–795.

Rich, J. O, Manitchotpisit, P., Peterson, S. W., Liu, S., Leathers, T. D. & Anderson, A. M. (2016). Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase. Biotechnology Letter 38: 863–870.

Scorzetti, G., Fell, J. W, Fonseca, A. & Statzell-Tallman, A. (2002). Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions, FEMS Yeast Research 2, 495-517.

Sjamzuridzal, W., Oetari, A., Kanti, A., Saraswati, R., Nakashima, C., Widyastuti, Y. & Katsuhiko, A. (2010). Ecological and taxonomical perspective of yeast in Indonesia. Mikrobiologi Indonesia 4(2), 60-68.

Souza, A. C., Carvalho, F. P., Batista, C. F. S., Schwan, R. F. & Dias, D. R. (2013). Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes. Journal of Microbiology and Biotechnology 23(10), 1403–1412.

Sumerta, I N. & Kanti, A. (2016). Keanekaragaman khamir yang diisolasi dari sumber daya alam pulau Enggano, Bengkulu dan potensinya sebagai pendegradasi selulosa. Berita Biologi 15(3), 261-269.

Takashima, M., Sugita, T., Van, B. H., Nakamura, M., Endoh, R. & Ohkuma, M. (2012). Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas, Plos One. 7(11), 1-8.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12), 2725–2729.

Vogel, C., Rogerson, A., Schatz, S., Laubach, H., Tallmanf, A. & Fell, J. (2007). Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water research 41, 1915-1920.

White, T. J., Burn, T., Lee, S., & Taylor, J. (1990). Aplification and direct sequencing of fungi ribosomal RNA gene for phylogenetic. In Innis, M. A., Gelfands, D. H., Snisky, J. J., and White, T. J., PCR protocols: A guide to method and applications. New York. Academic press. pp. 315-322.

Xu, J. (2016). Fungal DNA barcoding. Genome 59, 913–932.

Yuangsaard, N., Yongmanitchai, W., Yamada, M. & Limtong, S. (2013). Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Antonie van Leeuwenhoek 103, 577–588.

Zalar, P., Gostincar, C., de Hoog, G. S., Ursic, V., Sudhadham, M., & Gunde-Cimerman, N. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology 61, 21–38.

Refbacks





Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.