Mahameru Soybean (Glycine max) Cultivar, High Salinity Tolerant

Juwarno Juwarno, Tata Brata Suparjana, Muachiroh Abbas


Mahameru cultivar is high salinity tolerant cultivar. The previous study result showed Mahameru cultivar could tolerate 140mM NaCl, but Cilacap Coast salinity levels often reaching 200mM NaCl. A research of salinity stress on Mahameru cultivar at 200 mM NaCl have not conducted yet. Therefore to conduct the research of Mahameru at high salinity stress to obtained high salinity tolerant soybean cultivar.   The observed variables are anatomy (epidermis thickness, the density of stomata and trichomes, palisade thickness) physiology (the dry weight of roots and canopy, the content of chlorophyll a and b) Production (whole pod, total filled pod, total empty pod, weight per one-hundred beans). The salinity treatment was 0, 50,100, 150, 200 mM NaCl given at three days before planting and twenty-one days after planting. The data of anatomy and physiology was taken at forty-five days after planting. The production data was taken when soybean plants turned brown. The result indicates that salinity affects anatomy characteristic of leaf, higher the salinity increasing epidermis thickness and the density of stomata and trichomes. Salinity affected the content of chlorophyll a and b. Higher the salinity increased the content of chlorophyll a and b. Salinity did not affect soybean production. Based on this study Mahameru cultivar is resistant to salinity up to 200 mM NaCl. The benefit of this research help to enhance national soybean production with utilization coastal land for soybean planting Mahameru cultivar.         


Chlorophyll; Dry Weight; Salinity Stress; Stomatal Density; Total Pod

Full Text:



Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5(6), 350-360.

Arshi, A., Ahmad, A., Aref, I. M., & Iqbal, M. (2010). Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.) cultivars. Journal of Environmental Biology, 31(5), 795-801.

Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova, A., Kenzhebayeva, S., Aidosova, S., Nurzhanova, A., Zhardamalieva, A., Asrandina, S., Alybayeva, R. & Li, T., (2013). The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology, 12(18), 2366-2377.

Baniaghil, N., Arjanesh, m.H., Ghorbanli, M., Syahbazi, M. (2013). The effect of plant growth promoting Rhizobacteria on growth parameter, antioxidant enzymes, and microelement of Canola under salt stress. Journal of Applied Environmental and Biological Science, 3 (1), 17-27.

Dolatabadian, A., Sanavy, S. A. M. M., & Ghanati, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3(1), 41.

El-Rodeny, WM, & El-Okkiah, AFS (2012). Physiological and anatomical

changes in Glycine max L. Under salinity stress. Egypt. Journal Botany 2nd International Conference, 37-50.

Farid, M., and R. Sjahril. (2006). Defence soybean mechanism on salinity and drought based on morphology character. Buletin Penelitian Unhas Makasar. 9 (2), 146-153.

Gabriel, C., Julio, C.R., Leonardo, I.O., Juan, M.A., Mariel, G.P. (2011). Salinity induced anatomical and morphological changes in Chloris guyana Kunth roots.Argentina, Biocell, 35 (1), 9-17.

Ghassemi-Golezani, K., & Taifeh-Noori, M. (2011). Soybean performance under salinity stress. In Soybean-Biochemistry, Chemistry and Physiology. InTech. 631 – 642.

Hameed, M., Ashraf, M., Naz, N., Nawaz, T., Batool, R., Ahmad, M.S.A., Ahmad, F., and Hussain, M. (2013). Anatomical adaptations of Cynodon dactylon (L.) Pers. From the salt range (Pakistan) to salinity stress. II. Leaf anatomy. Pakistan Journal Botany, 45 (S1), 133-142.

Juwarno, Sumarsono, Samiyarsih, S. (2009). The effect of nitrogen fertilizer dosages on anatomical character of Ipomoea batatas L. Leaf. A Scientific Journal Biosfera, 26 (1), 30-34.

Juwarno, J., & Samiyarsih, S. (2017). Anatomical and Molecular Responses of Soy Bean (Glycine Max (L.) Merr.) Due to Salinity Stresses. Molekul, 12(1), 45-52.

Kisman, (2010). Morphological character of soybean as adaptation marker on drought stress. Agroteksos. 20 (1), 23-30.

Kobraee, S., Shamsi, K., & Vaghar, M. S. (2014). Dry matter production and allocation in soybean shoots under drought and micronutrient treatments. Current Biotica, 8(1), 13-20.

Kondetti, P., N. Jawali, S.K.Apte and M. G. Shitole. (2012). Salt tolerance in Indian soybean (Glycine max (L.) Merill) varieties at germination and early seedling growth. Annals of Biological Research, 3(3), 1489-1498.

Kuswantoro, H., Bayu, M. S. Y. I., Baliadi, Y., & Tengkano, W. (2017). Resistance of Advanced Soybean Lines to Pod Borer (Etiella zinckenella Treitschke). Biosaintifika: Journal of Biology & Biology Education, 9(2), 317-324.

Makbul, S., Güler, N. S., Durmuş, N., & Güven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 35(4), 369-377.

Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., & Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology, 9(34), 5475-5480.

Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1-3), 149-156.

Qu, Y. N., Zhou, Q., & Yu, B. J. (2009). Effects of Zn 2+ and niflumic acid on photosynthesis in Glycine soja and Glycine max seedlings under NaCl stress. Environmental and experimental botany, 65(2), 304-309.

Rastegar, Z., & Kandi, M. A. S. (2011). The effect of salinity and seed size on seed reserve utilization and seedling growth of soybean (Glycin max). Int. J. Agron. Plant Prod, 2(1), 1-4.

Rozbeh, F., M. Adel, and A. Ali. (2015). Effect of salt stress on seedling growth and ion homeostasis of soy bean (Glycine max ) cultivars. Journal of Scientific Research and Development. 2 (5) : 118-121.

Saad-Allah, K. M. (2015). Impact of sea salt stress on growth and some physiological attributes of some soybean (Glycine Max L.) varieties. Iranian Journal of Plant Physiology, 6(1), 1559-1571.

Sass, J. E. (1958). Botanical microtechnique. Botanical microtechnique., (3rd ed).

Sheteawi, S. A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascorbic. International Journal of Agriculture and Biology (Pakistan). 9(3), 473 – 478.

Simbolon, R. R., Kardhinata, E. H., & Husni, Y. (2013). Evaluasi Toleransi Tanaman Kedelai (Glycine max (L.) Merrill) Generasi M3 Hasil Radiasi Sinar Gamma Terhadap Salinitas. Agroekoteknologi, 1(3), 590-603.

Sofalian, O., Miandoab, P. B., Asghari, A., Sedghi, M., & Eshghi, A. (2013). Relationship between salt tolerance related physiological traits and protein markers in soybean cultivars (Glycine max l.). Cercetari agronomice in Moldova, 46(4), 47-56.

Tunçturk, M., Tunçturk, R., & Yasar, F. (2008). Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. African Journal of Biotechnology, 7(11), 1650-1654.

Triyani, A., Suwarto, S. Nurchasanah. (2013). Soybean (Glycine max L. Merril.) genotive tolerance on salinity concentration at vegetative phase. Agronomic Journal, 13 (1), 1-9.

Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2011). Physiological responses of soybean (‘Glycine max’L.) To zinc application under salinity stress. Australian Journal of Crop Science, 5(11), 1441.

Widiati, R., Musa, Y., Ala, A., & Bdr, M. F. (2014). Stomatal Performance Of Soybean Genotypes Due To Drought Stress And Acidity. International Journal of Scientific & Technology Research, 3(11), 270-275.

Yuniati, R. (2004). Soybean ( Glycine max (L.) Merrill) genotype screening on NaCl for planting at saline area. Makara Sains, 8 (1), 21-24.

Zulfi, A.L.S., Rosmayati., Isman N. (2014). Strain selection of soybean (Glycine max (L.) Merrill) of f4 generation on saline soil. Journal online Agrotechnology, 2 (4), 1287-1295.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.