Screening Endophytes of Neem Leaf that Potential Anti-Anthrax through Tests of Anti Staphylococcus Aureus

Khuzyia Rizqi Triavi Ananda, Sunarno Sunarno, Muhamad Fikri Zulfikar, Hafsah Avisha, Muhamad Nastain, Ridwan Abdullah


Anthrax is a deadly disease caused by Bacillus antracis that damages the lymphatic and vascular systems of animals and humans. Anthrax prevention in Indonesia has been done but has many shortcomings among them is a lot of dead animal raises after vaccination and relatively expensive. The azadirachtin bioactive compound produced by neem endophytic microbes is known to inhibit the growth of B. anthracis bacteria, thus potentially as an anti-anthrax agent. Other bacteria that have the same pathogens as B. antrachis are Methycillin Resistant Staphylococcus aureus (MRSA) so that it is used as a research object. The aim of this research is to obtain the active biomaterials from selected neem leaf endophytes to be tested in S. aureus MRSA as bacteria with Anthrax pathogens. The method used in this research is the isolation, selection, and extraction of Neem  endophytes. The process of isolation is done by growing on the general media and the selection process on special media. The bioactive extraction process uses 1000 rpm centrifuge and screening on MRSA culture medium. Inhibitory zone tests were used to determine the effect of endophytic biopsy in inhibiting MRSA growth. The result of the research is that the bioactive endophytes of neem are able to inhibit MRSA growth which is characterized by the formation of drag zone around the endophytic bioactive. Thus it can be concluded that the use of neem endophytes can be a new solution to eradicate the presence of anthrax disease in the livestock and people in Indonesia with safe research methods, relatively inexpensive and ineffective vaccine replacements.


Antibioterrorism; Anthrax; Endophytes; MRSA; Neem

Full Text:



Alvarez, Z., Kyungae, L., & Ernesto, A. S. (2010). Testing Nucleoside: analogues as inhibitors of Bacillus anthracis spore germination in vitro and in macrophage cell culture. Antimicrob Agents Chemother, 54(12), 5329-5336.

Clorinda, F. R. (2012). Uji Kemampuan Minyak Jintan Hitam (Nigella sativa) Menghambat Pertumbuhan Bakteri Staphylococcus aureus secara In Vitro. Jember: Fakultas Kedokteran Universitas Jember.

Darminto, A., Ali, I., & Dini. (2009). Identifikasi senyawa metabolit sekunder potensial mengahambat pertumbuhan bakteri Aeromonas hydrophyla dari kulit batang tumbuhan Avicennia spp. Jurnal Chemica, 10(2), 92-99.

Diniyah, S. (2010). Potensi Isolat Bakteri Endofit Sebagai Penghambat Pertumbuhan Bakteri (Ralstonia solanacearum) dan Jamur (Fusarium sp dan Phytophora infestans) Penyebab Penyakit Layu Pada Tanaman. Malang: Fakultas Sains dan Teknologi Universitas Islam Negeri Malang.

Ferbiyanto, A., Rusmana, I., & Raffiudin, R. (2013). Characterization and identifi cation of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI Journal of Biosciences, 200.

Gordon, R. J., & Lowy, F. D. (2008). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 46(5), S350–9.

Gursky, E., Inglesby, T. V., & O’Toole, T. (2011). Anthrax 2001: observations on the medical and public health response. Biosecur Bioterror, 1(2), 97-110.

Heindl, H., Thiel, V., Wiese, J., & Imhoff, J. F. (2012). Bacterial isolates from the bryozoan membranipora membranacea: influence of culture media on isolation and antimicrobial activity. Int. Microbiol, 15(1), 17-32.

Jagtap, K., & Chavan, M. (2016). In Vitro antibacterial activity of medicinal plant against bacterial pathogens. EJPMR, 3(6), 497-500.

Purwanto. (2011). Isolasi dan Identifikasi Senyawa Penghambat Polimerisasi Hem dari Fungi Endofit Tanaman Artemisia annual., Yogyakarta: Universitas Gadjah Mada Press.

Putra, N. (2015). Effect antimicrobacterial Nigella sativa for inhibits growth of bacteria. Majority, 4(4), 70-73.

Shimarmata, R., Lekatompessy, S., & Sukiman, H. (2007). Isolasi mikroba endofiik jati tanaman obat sambung nyawa (Gymura procumbens) dan analisis potensinya sebagai antimikroba. Berk Penel Hayati, 13, 85-90.

Siregar, E.A. (2002). Antraks: Sejarah Masa Lalu, Situasi pada Saat Ini, Sejarah Diagnosa dan Kecenderungan Perkembangan Ilmu di Masa Depan. Simposium Sehari Penyakit Antraks: Antraks di Indonesia, Masa Lalu, Masa Kini dan Masa Depan. Bogor: Balai Penelitian Veteriner.

Vaithiyanathan, S., Selvarajan, Subathradevi, & Mohanasrinivasan, V. (2016). Lantibiotic nisin: natural presertative from Lactococcus lactis. IRJP, 3(1), 2230-8407.

Wensing, A., Gernold, M. J. S., & Jansen, R. K. (2014). Geider identifiation and genetics of 6thioguanine secreted by Erwinia species and its interference with the growth of other bacteria. Mol Genet Genomics, 289, 215–223.

Yeh, E., Pinsky, B. A., Banaei, N., & Baron, E. J. (2009). Hair sheep blood, citrated or defibrinated, fulfills all requirements of blood agar for diagnostic mMicrobiology laboratory tests. PLoS ONE, 4(7).

Yuwono. (2012). Staphylococcus aureus dan Methicilin-Resistant Staphylococcus aureus (MRSA). Palembang: Departemen Mikrobiologi Fakultas Kedokteran Universitas Sriwijaya.

Zomorodian, K., Rahimi, M. J., Safaei, A., Bazargani, A., Motamadi, M., Kharazi, M., Mostaghni, S., Pakshir, K., Ghaedi, H., & Afsarian, M. H. (2011). Analysis of beta-hemolysis in human blood agars by Streptococcus pyogenes. Journal of Microbiological Methods, 85, 233–234.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.