Utilization of Oocytes Collected from Preserved Ovarian for In Vitro Production of Cat Embryos

Kartini Eriani(1), Arief Boediono(2), Sony Heru Sumarsono(3), Al Azhar(4),


(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Indonesia
(2) Faculty of Veterinary Medicine, Institut Pertanian Bogor
(3) School of Life Sciences and Technology, Institut Teknologi Bandung
(4) Faculty of Veterinary Medicine, Universitas Syiah Kuala, Indonesia

Abstract

Preservation of ovarian tissue from severely injured or dead valuable animals has the potential to preserve female germ cells of animals. The ability to mature and fertilize of oocytes from preserved ovary of endangered species will allow us to sustain genetic and global biodiversities. The aims of this study were to investigate the viability of oocytes collected from the preserved ovary and its potential utilization for the production of cat embryos followed by in vitro maturation and fertilization. Ovary was preserved immediately in phosphate buffer saline (PBS) at 4 °C for 24 or 48 hours. The quality and viability of oocytes after the maturation process were identified microscopically using aceto-orcein staining. Biological function of the oocytes was evaluated by using in vitro culture technique for the maturation and fertilization rate in CR1aa medium culture. The results showed that the percentage of oocytes collected from preserved ovary for 24 and 48 hours that remained at the stage of metaphase-II were 29.4% and 21.9% respectively. Fertilization rates produced in the IVF using oocytes collected from ovary preserved for 24 or 48 hours were significantly lower (30%) than that of unpreserved control (36.7%). In conclusion, female germ cells of cat ovary preserved at 4 °C in PBS for 2 days were still viable for in vitro fertilization and thus can be utilized for in vitro production of cat embryos. Information obtained can be used as a basis of knowledge of using a combination of physiological reagent and cold-based preservation technique in modern reproductive technology for animals.

Keywords

Cat embryo; Fertilization; In vitro maturation; Preserved ovary

Full Text:

PDF

References

Ackert, C. L., Gittens, J. E., O’Brien, M. J., Eppig, J. J. & Kidder, G. M. (2001). Intercellular communication via connexin 43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol. 233, 258-270.

Dave, D. & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. Am J Agricult Biol Sci. 6(4), 486-510

Do, L. T., Namula, Z., Luu, V. V., Sato, Y., Taniguchi, M., Isobe, T., Kikuchi, K. & Otoi, T. (2014). Effect of sericin supplementation during in vitro maturation on the maturation, fertilization and development of porcine oocytes. Reprod Domest Anim. 49, 17-20.

Eriani, K., Boediono, A., Djuwita, I., Sumarsono, S. H. & A. Azhar. (2008). Development of domestic cat embryo produced by preserved sperms. Hayati J Biosci. 15(4), 155-160

Eriani, K., Sukra, Y., Boediono, A., Djuwita, I. & Sumarsono, S. H. (2013). Produksi embrio kucing secara in vitro dari spermatozoa hasil preservasi melalui fertilisasi mikro [In vitro production of cat embryo from preserved sperms by micro fertilization] J Kedokteran Hewan. 7(1), 37-42.

Fassbender, M., Hildebrandt, T. B., Paris, M. C, Colenbrander, B. & Jewgenow, K. (2007). High-resolution ultrasonography of xenografted domestic cat ovarian cortex. J Reprod Dev. 53(5), 1023-1034.

Gencoglu, A., Camacho-Alanis, F., Nguyen, V. T., Nakano, A., Ros, A. & Minerick, A. R. (2011). Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis. 32, 2436-2447. doi:10.1002/elps.201100090

Giaretta, E., Spinaci, M., Bucci, D., Tamanini, C. & Galeati G. (2013). Effect of resveratrol on vitried porcine oocytes. Oxid Med Cell Longev. 2013, 1-7. doi: 10.1155/2013/920257

Jewgenow, K. & Paris MC. (2006). Preservation of female germ cells from ovaries of cat species. Theriogenology 66(1), 93-100.

Karja, N. W. K., Otoi, T., Murakami, M., Fahrudin, M. & Suzuki, T. (2002). In vitro maturation, fertilization and development of domestic cat oocytes recovered from ovaries collected at three stages of the reproductive cycle. Theriogenology 57, 2289-2298.

Lehninger, A. (2008). Principles of Biochemistry. 5th ed. Freeman, W. H. & Company, New York.

Liu, M. (2011). The biology and dynamics of mammalian cortical granules. Reprod Biol Endocrinol. 9, 149-166. doi: 10.1186/1477-7827-9-149

Otoi, T., Murakami, M., Ooaka, A., Karja, N. W. K & Suzuki, T. (2001). Effects of size and stroge temperature on meiotic competence of domestic cat oocytes. Vet Rec: 148, 160-8.

Palsdottir, H & Hunte, C. (2004). Lipids in membrane protein structures. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1666(1-2), 2-18.

Pope, C. E. (2000). Embryo technology in conservation efforts for endangered felids. Theriogenology. 53, 163-174.

Poschmann, M., Fassbender, M., Lopes, C., Dorresteijn, A. & Jewgenow, K. (2008). Viability assessment of primordial follicles of domestic cats to develop cryopreservation protocols for ovarian tissue. Reprod Domest Anim. 43, 23-25.

Prentice, R. J. & Anzar, M. (2010). Cryopreservation of mammalian oocyte for conservation of animal genetics. Vet Med Int. 2011, 1-11

Souza-Fabjan, J. M., Pereira, A. F., Melo, C. H., Sanchez, D. J., Oba, E., Mermillod, P., Melo, L. M., Teixeira, D. I. & Freitas, V. J. (2013). Assessment of the reproductive parameters, laparoscopic oocyte recovery and the first embryos produced in vitro from endangered Caninde goats (Capra hircus). Reprod Biol. 13, 325-332.

Sun, Q. & Schatten, H. (2006). Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction. 131, 193–205

Teperek, M. & Miyamoto, K. (2013). Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol. 12, 133-149. DOI 10.1007/s12522-013-0155-z

Tharasanit, T., Colenbrander, B. & Stout, T. A. E. (2005). Effect of cryopreservation on the cellular integrity of equine embryos. Reproduction. 129, 789-798. DOI: 10.1530/rep.1.00622

Tremoleda, J. L., Schoevers, E. J., Stout, T. A. E., Colenbrander, B. & Bevers, M. M. (2001). Organisation of the cytoskeleton during in vitro maturation of horse oocytes. Mol Reprod Dev. 60, 260-269.

Wiedemann, C., Zahmel, J., & Jewgenow, K. (2013). Short-term culture of ovarian cortex pieces to assess the cryopreservation outcome in wild felids for genome conservation. Vet Res. 9, 37.

Wood, T. C., Montali, R. J & Wildt, D. E. (1997). Follicle-oocytes atresia and temporal taphonomy in cold-stored domestic cat ovaries. Mol Rep Dev. 46, 190-200.

Yang, M. Y. & Fortune, J. E. (2006). Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod. 75(6), 924-932.

Yasmin, C., Otoi, T., Setiadi, M. & Karja, N. W. K. (2015). Maturation and fertilisation of sheep oocytes cultured in serum-free medium containing silk protein sericin. Acta Vet Hungarica. 63(1), 110-117.

Younglai, E. V., Holt, D., Brown, P., Jurisicova, A. & Casper, R. F. (2001). Sperm swim-up techniques and DNA fragmentation. Hum. Reprod. 16(9), 1950-53.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.