Lignolytic Enzyme Activity of Isolated Bacteria from Termite (Coptotermes Sp.) and Milkfish (Chanos chanos Forsskal, 1775) Guts

Emi Latifah(1), Putri Dwi Mulyani(2), Yekti Asih Purwestri(3),


(1) Biochemistry Laboratory, Faculty of Biology, Universitas Gadjah Mada
(2) Biochemistry Laboratory, Faculty of Biology, Universitas Gadjah Mada
(3) Research Center for Biotechnology, Universitas Gadjah Mada

Abstract

Bacteria BSR 2, Pseudomonas alcaligenes (BSR 3), Brevibacillus parabrevis (BSR 8), Brevibacillus sp. (BSR 9), isolated from termite gut and Bacillus licheniformis (BSA B1) isolated from milkfish gut have been known to possess celluloytic activity. However, their lignolytic ability has not been known. This study aimed to determine the lignolytic ability of bacteria isolated from termit (Coptotermes sp.) and milkfish (Chanos chanos Forsskal, 1775) guts and their enzymes characterization. The qualitative test was done through the spot test method, while quantitative assay was performed spectrophotometrically at 335 nm to calculate vanillin concentration. The isolates were grown in Lignin Mineral Medium, then the optical density (OD620) were measured every 24 hours for 5 days using spectrophotometer to determine their growth profile and the best isolation time of the lignolytic enzyme. Based on results, the best lignolytic enzyme isolation time for strains Bacillus licheniformis (BSA B1) and BSR 2 were 5 days, yielding lignolytic enzyme activity of 0.961 ± 0.168 U/mg and 2.176 ± 0.088 U/mg respectively,  while strains Pseudomonas alcaligenes (BSR 3), Brevibacillus parabrevis (BSR 8), and Brevibacillus sp. (BSR 9) were 4 days, yielding of 1.206 ± 0.045 U/mg, 1.162 ± 0.191 U/mg, and 0.896 ± 0.108 U/mg, respectively. The strain BSR 2 showed the highest lignolytic activity compared to other strains. The optimum temperature for lignolytic enzyme activity of BSR 2 was 30 ℃ and the optimum pH was 7. The lignolytic enzyme activity showed that these bacterial isolates can be a chance to be used as new alternative lignolytic enzyme source in commercial bioconversion process.

Keywords

Lignolytic bacteria; Lignolytic Enzyme; Milkfish Gut; Termite Gut

Full Text:

PDF

References

Allen, R. J., & Waclaw, B. (2019). Bacterial growth: A statistical physicist’s guide. Reports on Progress in Physics, 82(1), 016601.

Agustini, L., Irianto, R. S. B., Turjaman, M., & Santoso, E. (2011). Characterization of lignocellulolytic microbes collected from three types of national park ecosystems. Jurnal Pendidikan Hutan dan Konservasi Alam, 8(2), 197-210.

Bach, C. E., Warnock, D. D., van Horn, D. J., Weintraub, M. N., Sinsabaugh, R. L., Allison, S. D., & German, D. P. (2013). Measuring phenol oxidase and peroxidase activites with pyrogallol, L-DOPA, and ABTS: effect of assay conditions and soil type. Soil Biology and Biochemistry, 67, 183-191.

Bandounas, L., Wierckx, N. J. P., de Winde, J. E., & Ruijssenaars, H. J. (2011). Isolation and characterization of novel bacterial strains exhibiting lignolytic potential. BMC Biotechnology, 11, 94.

Black, J. G. (2012). Microbiology: Principles and Explorations, 8th Edition. USA: John Wiley & Sons.

Dias, A. A., Freitas, G. S., Marques, G. S. M., Sampaio, A., Fraga, I. S., Rodrigues, M. A. M., Bezerra, R. M. F. (2010). Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 101, 6045–6050.

El Salam, H. E. A., & Bahobail, H. S. (2014). Lignin biodegradation by thermophilic bacterial isolates from Saudi Arabia. Research Journal of Pharmaeutical, Biological and Chemical Science, 7(1), 1413-1424.

El Salam, H. E. A., & El Hanafy, A. A. (2009). Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from egyptian soil. American-Eurasian Journal of Agricultural & Environmental Sciences, 5(1), 39-44.

Falade, A. O., Eyisi, O. A. L., Mabinya, L. V., Nwodo, U. U., & Okoh, A. I. (2017). Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology Reports, 16(2017), 12-17.

Gonzalo, G., Colpa, D. I., Habib, M. H. M., & Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110-119.

Janatunaim, R. Z., Hamid, R. M., Christy, G. P., Purwestri, Y. A., & Tunjung, W. A. S. (2015a). Identification of BSA B1 bacteria and its potency of purified cellulase to hydrolize Chlorella zofingiensis. Indonesian Journal of Biotechnology, 20(1), 77-87.

Janatunaim, R. Z., Wijaya, C., Ridha, A., Ramadhani, E., Priyambada, F., & Purwestri Y. A. (2015b). Characterization of cellulase in the cellulolytic bacteria of termites (order: Isoptera) as composting accelerator agensia. In L. O. M. Y. Haya (Ed.), Proceedings of the hokkaido indonesian student association scientific meeting (HISAS): Vol. 12I (pp. 8-12). Siaga Printing.

Khammuang, S., & Sharntima, R. (2009). Mediator-assisted rhodamine B decolorization by Trametes versicolor laccase. Pakistan Journal of Biological Sciences, 12(8), 616-623.

[KEMENKES] Kementerian Kesehatan RI Direktorat Jenderal Bina Kefarmasian dan Alat Kesehatan. (2013). Farmakope Indonesia Edisi V. Jakarta.

Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2020) e03170.

Lai, C. M. T., Chua, H. B., Danquah, M. K., & Saptoro, A. (2017). Isolation of thermophilic lignin degrading bacteria from oil-palm empty fruit brunch (EFB) compost. In A. Saptoro, W. S. Khur, L. S. Wei, W. P. Q. Ng, M. Anwar, C. Yeo, & K. E. Huey (Eds.), IOP Conference Series: Materials Science and Engineering: Vol. 206. 29th Symposium of Malaysian Chemical Engineers (SOMChe) 2016. IOP Publishing.

Marbun, J. Y. F., Sutama, I. N. S., Mudita, I. M., & Wijana, I. W. (2016). Kemampuan degradasi dari isolat bakteri lignolitik asal cacing tanah (Lumbricus rubellus) pada substrat gulma tanaman pangan. Peternakan Tropika, 4(3), 700-713.

Martani, E., Haedar, N., & Margino, S. (2003). Isolation and characterization of lignin degrading bacteria from several natural substrates. Gama Sains V(2), 97-107.

Mulyani, P. D., Hamid, R. M., Janatunaim, R. Z., & Purwestri, Y. A. (2018). Amylolytic ability of bacteria isolated from termite (Coptotermes sp.) gut. Indonesian Journal of Biotechnoogy, 23(1), 14-20.

Plácido, J., & Capareda, S. (2015). Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresources and Bioprocessing, 20152,23.

Prakoso, H. T., Widiastuti, H., Suharyanto, & Siswanto. (2014). Eksplorasi dan karakterisasi bakteri aerob ligninolitik serta aplikasinya untuk pengomposan tandan kosong kelapa sawit. Menara Perkebunan, 82(1), 15-24.

Rajeswari, M., & Bhuvaneswari, V. (2016). Production of Extracelluler Laccase from the Newly Isolated Bacillus sp. PK4. African Journal of Biotechnology, 15(34), 1813-1826.

Sahadevan, L. D. M., Misra, C. S., & Thankamani, V. (2016). Characterization of lignin-degrading enzymes (LDEs) from a dimorphic novel fungus and identification of products of enzymatic breakdown of lignin. Biotechnology, 6, 56.

Singh, D., Narang, E., Chutani, P., Kumar, A., Sharma, K. K., Dhar, M. & Virdi, J. S. (2014). Isolation, characterization, and production of bacterial laccase from Bacillus sp.. in R. Kharwar, R. Uppadhyay, N. Dubey, & R. Raghuwanshi (Eds.), Microbial diversity and biotechnology in food security (pp. 439-450). Springer.

Tampoebolon, B. I. M., Bachruddin, Z., Yusiati, L. M., & Margino, S. (2014). Isolation and lignocellulytic activities of fiber-digesting bacteria from digestive tract of termite (Cryptothermes sp.). Journal of Indonesian Tropical Animimal Agriculture, 39(4), 224-234.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.