Niken Subekti


Rayap Macrotermes gilvus Hagen mempunyai peranan ekologis rayap tanah M. gilvus sebagai degradator primer di dalam hutan, eksplorasi perananannya sebagai agen biologis dalam perbaikan vegetasi dan perbaikan kualitas tanah. Rayap dapat memodifikasi sifat fisik dan kimia tanah. Penelitian tentang kandungan bahan organik telah dilakukan dengan analisis proksimat (metode Weende), sementara akumulasi mineral tanah menggunakan metode X-Ray berdasarkan Analysis Program Cristallynity. Rayap M. gilvus Hagen merupakan komponen penting dalam memodifikasi beragam mineral dari tanah disekitarnya. Hasil penelitian menunjukkan bahwa terdapat perbedaan nyata antara komposisi mineral tanah dalam sarang rayap M. gilvus Hagen dengan mineral tanah disekitar sarang. Hasil penelitian menunjukkan kandungan bahan organik dalam bangunan sarang menghasilkan sebesar 98.33% dan padatannya 1.67%. Padatan ini terdiri dari karbohidrat sebesar 3.16%, abu 4.19%, lemak 23.95%, protein sebesar 39.52%, dan sisanya 29.18% berupa mineral-mineral. Bangunan sarang rayap yaitu SiO2 dan Despujolsite yang dibawa dari lingkungan sekitar kedalan bangunan sarang. Unsur-unsur yang lain diperoleh dari sebagian material yang berasal dari saliva, humus dan tanah sekitar sarang.


The termite Macrotermes gilvus Hagen plays an ecological role. Subterranean termites M. gilvus is considered as the primary degradator in the forest, and therefore the exploration of its role as the biological agent to recover the vegetation and soil quality might be useful. Termites could modify the physical and chemical nature of soil. M. gilvus Hagen was an important component in modifying various minerals of the surrounding soil.  Research on the content of the organic materials had been proximat analysis (Weende methode), and the accumulation of soil mineral structure in the mound with X-Ray Methode (Analysis Program Cristallynity 2006). The result of the research indicated that there was significant difference between the composition of soil minerals in the mound of M. gilvus Hagen and the soil minerals around the mound. Analysis of the organic material in the mound building showed that the water was 98.33% and the solidity level was 1.67%, this solidity consisted of carbohydrate as much as 3.16%, ash as much as 4.19%, fat as much as 23.95%, protein as much as 39.52% and other minerals as much as 29.18%. The mound building in the minerals namely, SiO2 and Despujolsite, seemed to be carried in from the surroundings into the mound building. The other elements were obtained partly from the saliva, the fertile soil and the soil around the mound.


Macrotermes gilvus H.; Mound building; Organic material; Soil mineral

Full Text:



Aiyer P.V. 2005. African Journal of Biotechnology. Vol. 4 (13), pp. 1525-1529, December 2005

Ansel DC, Sillam EG, Lachaux M, Croci V. 2000. High Performance Liquid Chromatography Studies on The Polysaccharides in The Walls of The Mounds of Two Species of Termite in Senegal, Cubitermes oculatus and Macrotermes subhyalinus: Their Origin and Contribution to Structural Stability. Journal of Biology and Fertility Soil . Vol. 31, No. 6 : 508-516.

Bignell D.E; Roisin Y; Lo N. 2010. Biologi of termite: A Modern Synthesis. London: Springer Dordrecht Heidelberg.

Bonabeau E, Theraulaz G, Deneubourg JL, Franks NR, Rafelsberger O, Joly JL, Blanco S. 2000. A model for the emergence of pillar, wall and royal chambers in termite nest. Phill.Trans.Royal Society London. 353: 1561-1576.

Dangerfield JM, Carthy TS, Ellery WN. 1998. The mound - Building Termite Macrotermes michaelseni as an Ecosystem Engineer. Journal of Tropical Ecology,Vol.14:507-520

Duponnois R, Paugy M, Thioulouse J, Masse D, Lepage M. 2004. Functional Diversity of Soil Microbial Community, Rock Phosphate Dissolution and Growth of Acacia Seyal as Influenced by Grass, Litter and Soil-Feeding Termite Nest Structure Amendments. Geoderma No. 20 Vol. 1: 187-193

Hasinger P, Jaillard B, Dufey. 1992. Rapid Weathering of a Trioctahedral Mica By The Roots of Rygrass. Soil Science Society of America Journal 53: 977-982.

Jouquet P, Mamou L, Lepage M, Velde B. 2002. Effect of Termites on Clay Minerals in Tropical Soils : Fungus-Growing Termites as Weathering Agents. European Journal of Soil Science 52: 521-527.

________, Mery T, Rouland C, Lepage M. 2003. Modulated Effect of the Termite Ancistrotermes cavithorax (Isoptera, Macrotermitinae) on Soil Properties According to the Internal Mound Structures. Sosiobiology. Vol.42 No.2.

________, Tessier D, Lepage M. 2004. The Soil Structural Stability of Termite Nests : Role of Clay in Macrotermes bellicosus (Isoptera:Macrotermitinae) Mound Soils. European Journal of Soil Biology 40: 23-29

Korb J. 2011. Termite Mound Architecture, from Function to Construction in Biology of Termites: A Modern Synthesis. London: Springer Dordrecht Heidelberg. 349-374pp

Kouame LP, Ahipo ED, Niamke SL, Kouame FA, Kamenan A. 2004. Synergism of Cockroach (Periplaneta americana) α-amylase and α-glucosidase Hydrolysis of Starches. African Journal of Biotechnology Vol. 3 (10) pp. 529-533.

Lee SH, Bardunias P, Su NY. 2007. Optimal length distribution of termite tunnel branches for efficient food search and resource transportation. BioSystems. 90: 802-807.

Lommelen E, Schoeters E, Billen J. 2002. Ultrastructure of the Labial Gland in the Ant Pachycondyla obscuricornis (Hymenoptera,Formicidae). Netherlands Journal of Zoology 52 (1): 61-68.

Mahaney. 1999. Chemistry, Mineralogy and Microbiology of Termite Mound Soil Eaten by The Chimpanzees of The Mahale Mountains, Western Tanzania. Journal of Tropical Ecology. 15: 565-588.

Robert M, Berthelin. 1986. Role of Biological and Biochemical Factors in Soil Mineral Weathering. In Interactions of Soil Mineral with Natural Organics and Microbes. Soil Science Society of America 17: 453-495.

Subekti N and Yoshimura T. 2009. α- amylase activities of saliva from three subterranean termites : Macrotermes gilvus Hagen, Coptotermes formosanus Shiraki, and Retikulitermes speratus Kolbe. Japanese Journal of Environmental Entomology and Zoology. Vol.20 No.4. pp.191-199.

DOI: https://doi.org/10.15294/biosaintifika.v4i1.2263


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.