Total Phenol Content of Avicennia marina Leaf and Its Relationship to the Environmental Quality

Endah Dwi Hastuti, Munifatul Izzati, Sri Darmanti


Environmental dynamic in the coastal area is suggested to affect the metabolite concentration in mangrove plants. This research aimed to study the concentration of total phenol in A. marina leaf and to analyze the effect of environmental parameters on total phenol content dynamics. Environmental parameters studied in this research was temperature, pH, DO, and salinity, as well as N, P, and C sediment content. Data analysis was carried out through multiple regression of natural logarithm transformed data. Laboratory analysis resulted the value of total phenol content in A. marina leaf ranging from 0.88 – 1.62% with the average concentration of 1.28 ± 0.28%. Regression analysis resulted the significant effect of temperature, DO, and sediment content P and C expressed in the formula: ln(TP) = 31.229 – 7.224ln(T) – 0.067ln(DO) – 1.054ln(P) – 1.241ln(C). The research implicated that the increasing value of those factors was approaching the suitable condition for A. marina. Thus, instead of increasing the phenol concentration, the parameters negatively effect the secondary metabolite. The result showed that increasing temperature, DO, and content of P and C reduced the stress in A. marina and reduce total phenol content. This suggests that low temperature, DO, P and C concentration provides more potential of phenolic products from A. marina. 


Mangrove; Negative; Nutrient; Phenol; Regression

Full Text:



Allahdadi, M., & Farzane, P. (2018). Influence of different levels of nitrogen fertilizer on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. Journal of Medicinal Plants Studies, 6(1), 109–115.

Alongi, D. M. (2014). Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 6(1), 195–219.

Alongi, D. M. (2018). Impact of global change on nutrient dynamics in mangrove forests. Forests, 9(10), 596.

Ariyanto, D., Bengen, D. G., Prartono, T., & Wardiatno, Y. (2018). Short communication: The relationship between content of particular metabolites of fallen mangrove leaves and the rate at which the leaves decompose over time. Biodiversitas, 19(3), 730–735.

Bibi, S. N., Fawzi, M. M., Gokhan, Z., Rajesh, J., Nadeem, N., Kannan, R. R. R., Albuquerque, R. D. D. G., & Pandian, S. K. (2019). Ethnopharmacology, phytochemistry, and global distribution of mangroves―A comprehensive review. Marine Drugs, 17(4), 231.

Boestfleisch, C., & Papenbrock, J. (2017). Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L. and Halimione portulacoides (L.) Aellen as reaction to mild salinity. PLOS ONE, 12(4), e0176303.

Cavanaugh, K. C., Dangremond, E. M., Doughty, C. L., Williams, A. P., Parker, J. D., Hayes, M. A., Rodriguez, W., & Feller, I. C. (2019). Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences, 116(43), 21602–21608.

Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: A versatile source of anticancer drugs. Pharmacognosy Reviews, 5(9), 1–12.

Chomel, M., Guittonnyâ€Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., Jackson, B. G., & Baldy, V. (2016). Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104(6), 1527–1541.

Cucikodana, Y., Malahayati, N., & Widowati, T. W. (2019). Phytochemical content, antioxidant and antibacterial activity of mangrove (Avicennia marina) leaves extract. International Journal of Recent Scientific Research, 10(7B), 33403–33406.

Damodaran, P. N., Udaiyan, K., & Jee, H. J. (2010). Biochemical changes in cotton plants by arbuscular mycorrhizal colonization. Research in Biotechnology, 1, 6–14.

Deborde, J., Marchand, C., Molnar, N., Patrona, L. Della, & Meziane, T. (2015). Concentrations and Fractination of carbon, iron, sulfur, nitrogen and phosphorus in mangrove sediments along an intertidal gradient (semi-arid climate, New Caledonia). Journal of Marine Science and Engineering, 3(i), 52–72.

Dhakshinamoorthy, S., Mariama, K., Elsen, A., & De Waele, D. (2014). Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology, 16(5), 565–576.

Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules, 15(12), 8813–8826.

Guerriero, G., Berni, R., Muñoz-Sanchez, J., Apone, F., Abdel-Salam, E. M., Qahtan, A. A., Alatar, A. A., Cantini, C., Cai, G., Hausman, J.-F., Siddiqui, K. S., Hernández-Sotomayor, S. M. T., & Faisal, M. (2018). Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes, 9(6), 309.

Iwuala, E. N., & Alam, A. (2017). Effects of simulated drought stress on secondary metabolite production in red mangrove (Rhizophora mangle L.; Rhizophoraceae). Journal of Advances in Biology & Biotechnology, 15(1), 1–6.

Kocacaliskan, I., Turan, E., Erturk, U., Demir, Y., & Terzi, I. (2020). Varietal and time dependent differences in juglone and total phenolic contents of the Walnut (Juglans regia L.) leaves. Progress in Nutrition, 22(1), 1–6.

Kumara, V., & Kumar, V. (2011). Evaluation of water quality of mangrove ecosystems of Kundapura, Udupi District, Karnataka, Southwest coast of India. Journal of Ecobiotechnology, 3(12), 23–29.

Li, Z., Lee, H. W., Liang, X., Liang, D., Wang, Q., Huang, D., & Ong, C. N. (2018). Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules, 23(5), 1139.

Liu, M., Huang, H., Bao, S., & Tong, Y. (2019). Microbial community structure of soils in Bamenwan mangrove wetland. Scientific Reports, 9(1), 8406.

Mangrio, A. M., Rafiq, M., Naqvi, S. H. A., Junejo, S. A., Mangrio, S. M., & Rind, N. A. (2016). Evaluation of phytochemical constituents and antibacterial potential of avicennia marina and rhizophora mucronata from indus delta of Pakistan. Pakistan Journal of Biotechnology, 13(4), 259–265.

Manju, M. N., Remi, P., Kumar, T. R. G., Kumar, C. S. R., Rahul, R., Joseph, M. M., & Chandramohanakumar, N. (2012). Assessment of water quality parameters in mangrove ecosystems along Kerala Coast: A statistical approach. International Journal of Environmental Research, 6(4), 893–902.

Moser, S. C., Jeffress Williams, S., & Boesch, D. F. (2012). Wicked challenges at land’s end: Managing coastal vulnerability under climate change. Annual Review of Environment and Resources, 37(1), 51–78.

Padmaja, M., & Srinivasulu, A. (2016). Influence of pH and temperature on total phenol content of Ocimum sanctum leaves. Indian Journal of Pharmaceutical Science & Research, 6(2), 69–72.

Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V, Alizad, K., & Wang, D. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. Earth’s Future, 3(6), 159–181.

Pontigo, S., Ulloa, M., Godoy, K., Nikolic, N., Nikolic, M., Mora, D. L., & Cartes, P. (2018). Phosphorus efficiency modulates phenol metabolism in wheat genotypes. Journal of Soil Science and Plant Nutrition, 18(3), 904–920.

Quisthoudt, K., Schmitz, N., Randin, C. F., Dahdouh-Guebas, F., Robert, E. M. R., & Koedam, N. (2012). Temperature variation among mangrove latitudinal range limits worldwide. Trees, 26(6), 1919–1931.

Ryandini, D., Pramono, H., & Sukanto, S. (2018). Antibacterial activity of Streptomyces SAE4034 isolated from Segara Anakan mangrove rhizosphere against antibiotic resistant bacteria. Biosaintifika: Journal of Biology & Biology Education, 10(1), 117–124.

Sarker, B. C., & Karmoker, J. (2011). Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris Medik.). Bangladesh Journal of Botany, 40(1), 23–27.

Scharler, U. M., Ulanowicz, R. E., Fogel, M. L., Wooller, M. J., Jacobson-Meyers, M. E., Lovelock, C. E., Feller, I. C., Frischer, M., Lee, R., McKee, K., Romero, I. C., Schmit, J. P., & Shearer, C. (2015). Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 179(3), 863–876.

Scholander, P. F., van Dam, L., & Scholander, S. I. (1955). Gas exchange in the roots of mangroves. American Journal of Botany, 42(1), 92–98.

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic atress. Molecules, 24(13), 2452.

Sofawi, A. B., -Nazri, M. N., & -Rozainah, M. Z. (2017). Nutrient variability in mangrove soil: Anthropogenic, seasonal and depth variatio factors. Applied Ecology and Environmental Research, 15(4), 1983–1998.

Wang, Z., Yu, D., Zheng, C., Wang, Y., Cai, L., Guo, J., Song, W., & Ji, L. (2019). Ecophysiological analysis of mangrove seedlings Kandelia obovata exposed to natural low temperature at near 30°N. Journal of Marine Science and Engineering, 7(9), 292.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.