Carotenoid Production by Rhodosporidium paludigenum Using Orange Peel Extract as Substrate

Renna Eliana Warjoto, Jennifer Jennifer, Bibiana Widyawati Lay


Carotenoids are fat-soluble pigments that have various benefits in health and beauty. The demand and market of carotenoids are increasing; thus, the faster and cheaper biological production of these pigments using microorganisms is desired. In this study, the optimum medium pH and nitrogen concentration for carotenoid production by Rhodosporidium (R.) paludigenum using orange peel extract as substrate were determined. The soluble sugars from orange peels were extracted using distilled water at 100 °C. The yeast inoculum was cultivated in Yeast Peptone Dextrose (YPD) media before fermentation. The independent variables in the fermentation factorial design included initial medium pH (5; 6; and 7) and nitrogen concentration (0; 1; and 1.75 g/L urea in the medium). The decrease in reducing sugar concentration and the increase in biomass dry weight during fermentation demonstrated carbon source consumption by R. paludigenum for growth and carotenoid production. On the sixth day of fermentation (D6), the culture was harvested for the total carotenoid extraction and determination. The highest total carotenoid yield (107.63 µg/g) was achieved by the treatment group with an initial medium pH of 6 without nitrogen supplementation. This result indicated the orange peel extract potential as a substrate for carotenoid production using R. paludigenum as a workhorse. This was the first reported research in natural carotenoid generation using R. paludigenum (strain InaCC Y-236) locally isolated in Indonesia as the producer and orange peel extract as the substrate. Thus, this research would enrich the microbial carotenoid exploration and waste valorization to value-added products at the same time. The study can then be developed further and upscaled for industrial applications. 


Carotenoids; Nitrogen; Orange Peel; pH; Rhodosporidium paludigenum

Full Text:



Behera, B. K., & Varma, A. (2017). Material-Balance Calculation of Fermentation Processes. In Microbial Biomass Process Technologies and Management. Cham: Springer International Publishing.

Bonadio, M. P., de Freita, L. A., & Mutton, M. J. R. (2018). Carotenoid production in sugarcane juice and synthetic media supplemented with nutrients by Rhodotorula rubra l02. Brazilian Journal of Microbiology, 49(4), 872-878.

Cardoso, L., A., C., Jäckel, S., Karp, S., G., Framboisier, X., Chevalot, I., & Marc, I. (2016). Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresource Technology, 200, 374–379.

Castelblanco-Matiz, L. M., Barbachano-Torres, A., Ponce-Noyola, T., Ramos-Valdivia, A. C., García-Rojas, C. M. C., Flores-Ortiz, C. M., Barahona-Crisóstomo, S. K., Baeza-Cancino, M. E., Alcaíno‑Gorman, J., & Cifuentes‑Guzmán, V. H. (2015). Carotenoid production and gene expression in an astaxanthin‑overproducing Xanthophyllomyces dendrorhous mutant strain. Archives of Microbiology, 197(10), 1129-1139.

Chokshi, K., Pancha, I., Ghosh, A., & Mishra, S. (2017). Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnology for Biofuels, 10(60), 1-12.

Córdova, P., Alcaíno, J., Bravo, N., Barahona, S., Sepúlveda, D., Fernández-Lobato, M., Baeza, M., & Cifuentes, V. (2016). Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8–Tup1 involved in catabolic repression. Microbial Cell Factories, 15(1), 1-19.

Dias C., Sousa, S., Caldeira, J., Reis, A., & da Silva, T., L. (2015). New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresource Technology, 189, 309–318.

Dimarti, S. C., Susilaningsih, N., & Yuniati, R. (2020). Phycocyanin from Spirulina platensis induces cytotoxicity and apoptosis in T47D cells. Biosaintifika: Journal of Biology & Biology Education, 12(1), 28-34.

El-Banna, A. A., El-Razek, A. M. A., & El-Mahdy, A. R. (2012). Some factors affecting the production of carotenoids by Rhodotorula glutinis var. glutinis. Food and Nutrition Sciences, 3(1), 64-71.

Elfeky, N., Elmahmoudy, M., Zhang, Y., Guo, J., & Bao, Y. (2019). Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Applied Sciences, 9(12), 2444.

Fan, J., Cui, Y., Wan, M., Wang, W., & Li, Y. (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnology for Biofuels, 7(1), 17.

Food and Agriculture Organization of the United Nations. (2016). Citrus Fruit Statistics 2015. Retrieved from:

Fufezan, C., Simionato, D., & Morosinotto, T. (2012). Identification of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana. PLoS ONE, 7(4), e35669.

Galal, G. F., & Ahmed, R. F. (2020). Using of some agro-industrial wastes for improving carotenoids production from yeast Rhodotorula glutinis 32 and bacteria Erwinia uredovora DSMZ 30080. Microbiology Research Journal International, 30(1), 15-25.

Gao, S., Tong, Y., Zhu, L., Ge, M., Zhang, Y., Chen, D., Jiang, Y., & Yang, S. (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering, 41, 192-201.

Hallin, E. I., Hasan, M., Guo, K., & Ã…kerlund, H.-E. (2016). Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation. Photosynthesis Research, 129(1), 29-41.

Han, M., Xu, Z-Y., Du, C., Qian, H., & Zhang, W-G. (2016). Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus. Bioprocess and Biosystems Engineering, 39(9), 1425-1433.

Hernández-Almanza, A., Navarro-Macías, V., Aguilar, O., Aguilar-González, M. A, & Aguilar, C. N. (2017). Carotenoids extraction from Rhodotorula glutinis cells using various techniques: a comparative study. Indian Journal of Experimental Biology, 55(1), 479-484.

Insan, A. I., Christiani, Hidayah, H. A., & Widyartini, D. S. (2018). The lipid content of the culture microalgae using media of tapioca liquid waste. Biosaintifika: Journal of Biology & Biology Education, 10(2), 440-448.

Jariwala, H. J., & Syed, H. S. (2016). Study on use of fruit peels powder as a fertilizer: Recent advances in environmental sciences and engineering, 1–4.

Javed, U., Ansari, A., Aman, A., & Qader, S. A. U. (2019). Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. Biocatalysis and Agricultural Biotechnology, 21, 101341.

Jha, P., Singh, S., Raghuram, M., Nair, G., Jobby, R., Gupta, A., & Desai, N. (2019). Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. Environmental Sustainability, 2(1), 33-41.

Kanti, A., Sukara, E., Latifah, K., Sukarno, N. & Boundy-Mills, K. (2013). Indonesian oleaginous yeasts isolated from Piper betle and P. nigrum. Mycosphere, 4(5), 1015-1026.

Kurtzman, C., Fell, J. W., & Boekhout, T. (2011). The yeasts: a taxonomic study (5th Ed). San Diego: Elsevier.

Lado, J., Alós, E., Manzi, M., Cronje, P. J. R., Gómez-Cadenas, A., Rodrigo, M. J., & Zacarías, L. (2019). Light Regulation of Carotenoid Biosynthesis in the Peel of Mandarin and Sweet Orange Fruits. Frontiers in Plant Science, 10, 1288.

Lee, J. J. L., Chen, L., Shi, J., Trzcinski, A., & Chen, W-N. (2014). Metabolomic profiling of Rhodosporidium Toruloides grown on glycerol for carotenoid production during different growth phases. Journal of Agricultural and Food Chemistry, 62(41), 10203-10209.

Liu, W., Huang, Z., Li, P., Xia, J., & Chen, B. (2012). Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. Journal of Experimental Marine Biology and Ecology, 418-419, 24-29.

Lopes, H. J. S., Bonturi, N., Kerkhoven, E. J., Miranda, E. A., & Lahtvee, P-J. (2020). C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Applied Microbiology and Biotechnology, 104(6), 2639-2649.

Loto, I., Gutiérrez, M. S., Barahona, S., Sepúlveda, D., Martínez-Moya, P., Baeza, M., Cifuentes, V., & Alcaíno, J. (2012). Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiology, 12(1), 235.

Machado, W. R. C. & Burkert, J. F. M. (2015). Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. African Journal of Microbiology Research, 9(4), 209-219.

Manasika, A. & Widjanarko, S. B. (2014). Ekstraksi pigmen karotenoid labu kabocha menggunakan metode ultrasonik (kajian rasio bahan: pelarut dan lama ekstraksi). Jurnal Pangan dan Agroindustri, 3(3), 928-938.

Mannazzu, I., Landolfo, S., Silva, T. L., & Buzzini, P. (2015). Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World Journal of Microbiology and Biotechnology, 31(11), 1665-1673.

Mata-Gómez, L., Montañez, J., Méndez-Zavala, A., & Aguilar, C. (2014). Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factories, 13(1), 12.

Matthäus, F., Ketelhot, M., Gatter, M., & Barth, G. (2014). Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 80(5), 1660-1669.

Nasirian, N., Mirzaie, M., Cicek, N., & Levin, D. B. (2018) Lipid and carotenoid synthesis by Rhodosporidium diobovatum, grown on glucose versus glycerol, and its biodiesel properties. Canadian Journal of Microbiology, 64(4), 277-289.

Ozturk, B., Winterburn, J., & Gonzalez-Miquel, M. (2019). Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochemical Engineering Journal, 151, 107298.

Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 113(3), 444.

Pinheiro, M. J., Bonturi, N., Belouah, I., Miranda, E. A., & Lahtvee, P-J. (2020). Xylose metabolism and the effect of oxidative stress on lipid and carotenoid production in Rhodotorula toruloides: insights for future biorefinery. bioRxiv, 1-24.

Rafsanjani, M. K. & Putri, W. D. R. (2014). Karakterisasi ekstrak kulit jeruk Bali menggunakan metode ultrasonic bath (kajian perbedaan pelarut dan lama ekstraksi). Jurnal Pangan dan Agroindustri, 3(4), 1473-1480.

Rodrigo, M. J., Alquézar, B., Alós, E., Medina, V., Carmona, L., Bruno, M., Al-Babili, S., & Zacarías, L. (2013). A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany, 64(14), 4461–4478.

Santos, C. M., Dweck, J., Viotto, R. S., Rosa, A. H., & de Morais, L. C. (2015). Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresource Technology, 196, 469-479.

Shi, K., Gao, Z., Shi, T-Q., Song, P., Ren, L-J., Huang, H., & Ji, X-J. (2017). Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Frontiers in Microbiology, 8(793), 1-9.

Singh, G., Jawed, A., Paul, D., Bandyopadhyay, K., K., Kumari, A., & Haque, S. (2016). Concomitant production of lipids and carotenoids in Rhodosporidium toruloides under osmotic stress using response surface methodology. Frontiers in Microbiology, 7, 1686.

Tarangini, K. & Mishra, S. (2014). Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters. Iranian Journal of Chemistry and Chemical Engineering, 33(3), 89-99.

Tchakouteu, S. S., Chatzifragkou, A., Kalantzi, O., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2014). Oleaginous yeast Cryptococcus curvatusexhibits interplay between biosynthesis of intracellular sugars and lipids. European Journal of Lipid Science and Technology, 117(5), 657-672.

Thapa, S. S., & Grove, A. (2019). Do global regulators hold the key to production of bacterial secondary metabolites? Antibiotics, 8(4), 160.

Torrado, A. M., Cortés, S., Salgado, J. M., Max, B., Rodríguez, N., Bibbins, B. P., Converti, A., & Domínguez, J. M. (2011). Citric acid production from orange peel wastes by solid-state fermentation. Brazilian Journal of Microbiology, 42(1), 394-409.

Yang, Q., Ding, X., Liu, X., Liu, S., Sun, Y., Yu, Z., . . . Xia, L. (2014). Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microbial Cell Factories, 13(1), 27.

Yilancioglu, K., Cokol, M., Pastirmaci, I., Erman, B., & Cetiner, S. (2014). Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE, 9(3), e91957.

Yimyoo, T., Yongmanitchai, W., & Limtong, S. (2011). Carotenoid production by Rhodosporidium paludigenum DMKU3-LPK4 using glycerol as the carbon source. Kasetsart Journal - Natural Science, 45, 90-100.

Zhang, Y-M., Chen, H., He, C-L., & Wang, Q. (2013). Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS ONE, 8(7), e69225.

Zhang, Z., Zhang, X., & Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157, 149–153.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.