Alkaline Phosphatase Expression From Mice Mesenchymal Stem Cells Induced By Flamboyant Flower (Delonix regia) Extract

Kartini Eriani, Deby Anggraini, Yudha Bintoro, Ichsan Ichsan, Al Azhar, Silmi Mariya

Abstract


Flamboyant flower (Delonix regia) extract can increase proliferation and differentiation rates of mesenchymal stem cells (MSCs) into specific cells such as bone, nerve, and fibroblast cells. The extract possess metabolic compounds that may act as antibiotics, anti-inflammatory, antimicrobial, diuretic, anthelmentic, astringent, leucorrhoea, and potentially increase the body's metabolism normally. This study aimed to investigate expression level of alkaline phosphatase (ALP) by mice MSCs treated with flamboyant flower extract in vitro. Here, mice bone marrow cell cultures were treated with flamboyant flower extracts of 0.6 mg/ml (P1), 0.7 mg/ml (P2), 0.8 mg/ml (P3), and 0.9 mg/ml (P4). Untreated cell culture was used as negative control (P0). Expression of ALP gene was measured by RT-qPCR method. The results showed that mice mesenchymal stem cell could differentiate into bone, nerve, and fibroblast cells. The addition of flamboyant flower extract ranged from 0.6-0.9 mg/ml significantly (p<0.05) influenced the expression of ALP by differentiating MSCs. The highest expression was found at the stem cells treated with flamboyant flower extract of 0.8 mg/ml, 0.13 times compared with control. In conclusion, flamboyant flower extracts treatment might increase the expression of ALP in differentiating MSCs.  This information can be used as a basis for finding an appropriate biomarkers for tracking the differentiation and profileration of tissue originated MSCs induced by extracts of medicinal plants.


Keywords


Alkaline Phosphatase; Actin Beta; Flamboyant Flower Extract; qPCR

Full Text:

PDF

References


Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell, 4th Ed. Garland Science, New York.

Bateman, M., Strong, A. L., Burow, M. E., Wang, G., Boue, S. M., Bunnell, B. A. (2015). Bone Formation: Roles of Genistein and Daidzein in Genistein and Daidzein: Food Sources, Biological Activity and Health Benefits. Nova Science Publishers, Inc., 111-167.

Behera, B. C., Yadav, H., Singh, S. K., Mishra, R. R., Sethi, B. K., Dutta, S. K., & Thatoi, H. N. (2017). Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Gen Engin Biotech. 15, 169-178.

Birmingham, E., Niebur, G. L., McHugh, P. E., Shaw, G., Barry, F. P., & McNamara, L. M. (2012). Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells and Materials. 23, 13-27.

Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., & Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 7, 2(2): 151-159.

Calloni, R, Cordero, E. A. A/, Henriques, J. A. P., & Bonatto, D. (2013). Reviewing and Updating the major molecular markers for stem cells. Stem Cells Develop. 22(9), 1455-1476.

Cheng, T. & Scadden, D. T. (2014). Cell cycle regulators in stem cells. In: Lanza, R. & Atala, R. Essentials of Stem Cell Biology. Chapter 8. Academic Press, New York.

Coulibaly, M. O., Sietsema, D. L., Burgers, T. A., Mason, J., Williams, B. O., Clifford, B., & Jones, C. B. (2010). Recent Advances in the use of serological bone formation markers to monitor callus development and fracture healing. Crit Rev Eukaryot Gene Expr. 20(2), 105-127

de Freitas, M. V., Netto, R. D. C. M., da Costa Huss, J. C. et al. (2008). Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes, Toxicol in Vitro. 22(1), 219–224.

Eriani, K, Ainsyah, Rosnizar, Yunita, Ichsan, & Azhar, A. (2018a). Immunostimulatory effect, of methanol extract of flamboyant leaf [Delonix regia (Boj. ex Hook.) Raf.] in mice. Natural. 18(1), 44-48.

Eriani, K, Suryani, I, Azhar, A, Nursanty, R, Ichsan, I, & Boediono, A. (2018b). Neurogenic differentiation of bone marrow mesenchymal-like stem cell induced by Delonix regia flowers extract. Biosaintifika. 10(2), 417-423

Fakhry, M., Hamade, E., Badran, B., Buchet, R., & Magne, D. (2013). Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 5(4), 136-148.

Fatmawaty, Rosmalena, Amalia, A., Syafitri, I., Prasasty, V. D. (2017). Antimalarial effect of flamboyant (Delonix regia) bark and papaya (Carica papaya L) leaf ethanolic extracts against Plasmodium berghei in mice. Biomed Pharmacol J. 10(3), 1081-1089.

Jahan, I., Rahman, S. M., Rahman, S. M., Kaisar, A. M., Islam, S. M., Wahab, A., & Rashid, A. M. (2010). Chemical and biological investigations of Delonix regia (Bojer ex Hook.) Raf. Acta Pharm. 60, 207-215.

Jin, K., Ban, T. H., Jung, J. Y., Kim, A. J., Kim, Y., Lee, S. Y., et al. 2018. Stabilization of serum alkaline phosphatase in hemodialysis patients by implementation of local chronic kidney disease-mineral bone disorder management strategy: a quality improvement study. Kidney Res Clin Pract. 37, 157e66.

Štefková, K., Procházková, J., & Pacherník, J. (2015). Alkaline phosphatase in stem cells., Stem Cells Int. 2015, 1-11.

Koleske, A. J. (2013). Molecular mechanisms of dendrite stability. Nat Rev Neurosci. 14(8), 536-550. doi: 10.1038/nrn3486

Kurniawati, Y., Adi, S., Achadiyani, Suwarsa, O., Erlangga, D., & Putri, T. (2015). Culture of primary fibroblast: A preliminary research. Artikel Penelitian. 38(1), 34.

Li, D., Secher, J. O., Juhl, M., Mashayekhi, K., Nielsen, T. T., Holst, B., Hyttel, P., Freude, K. K., & Hall, V. J. (2017). Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts. Cell Cycle. 16(11), 1070–1084

Milani, A., Basirnejad, M., Shahbazi, S., & Bolhassani, A. (2017). Carotenoids: Biochemistry, pharmacology and treatment. British J Pharm. 174, 1290-1324.

Nam, K. H., Vesela, I., Siismets, E., & Hatch, E. N. (2019). Tissue nonspecific alkaline phosphatase promotes calvarial progenitor cell cycle progression and cytokinesis via Erk1,2. Bone, 120, 125-136.

Penha-Silva, N., Firmino, C. B., de Freitas Reis F. G. et al. (2007), Influence of age on the stability of human erythrocyte membranes. Mechanisms of Ageing and Development. 128(7-8), 444-449.

Rutkovskiy, E. A., Stensløkken, E. K. O., & Vaage, I. J. (2016). Osteoblast differentiation at a glance. Med Sci Monit Basic Res. 22, 95-106

Sharma, U. Pal, D. & Prasad, R. (2014). A novel role of alkaline phosphatase in the ERK1/2 dephosphorylation in renal cell carcinoma cell lines: A new plausible therapeutic target. Biochimie. 107, 406-409

Singh, S., & Kumar, N. S. (2014). A Review: Introduction to genus Delonix. WorldJ Pharmacy Pharmaceut Sci. 3(6): 2042-2055.

Saud, B. Malla, R. & Shrestha, K. (2017). A review on the effect of plant extract on mesenchymal stem cell proliferation and differentiation. Stem Cells Int. 2019, 1-13

Tan, W., Tan, Q., Wang, T., Lian, M., Zhang, L., & Cheng, Z. (2017). Calpain 1 regulates TGF-β1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway. Am J Transl Res. 9(3):1402-1409

Torre, E. 2017. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem Rev. 16: 1183-1226

Wang, L. S., Lee, C. T., Su, W. L., Huang, S. C., & Wang, S. C. (2016a). Delonix regia leaf extract (DRLE): A potential therapeutic agent for cardioprotection. PLOS ONE |DOI:10.1371/journal.pone.0167768 December 9, 201.

Wang, C., Meng, H., Wang, X., Zhao, C., Peng, J., & Wang, Y. (2016b). Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit. 22, 226-233.

Yoshizaki, K., Hu, L., Nguyen, T., Sakai, K., Ishikawa, M., Takahasi, I., Fukumoto, S., DenBesten, P. L., Bikle, D. D., Oda, Y., & Yamada, Y. (2017). Mediator 1 contributes to enamel mineralization as a coactivator for Notch1 signaling and stimulates transcription of the alkaline phosphatase gene. J Biol Chem. 292(33), 13531-13540.




DOI: https://doi.org/10.15294/biosaintifika.v12i3.25433

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.