Isolation of Potential Plant Growth Promoting Rhizobacteria (PGPR) from Cassava (Manihot esculenta) Rhizosphere Soil

Suri Raihan Safriani(1), Lenni Fitri(2), Yulia Sari Ismail(3),


(1) Postgraduate Program, Department Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala
(2) Department Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Indonesia
(3) Department Biology, Faculty of Mathematics and Natural Science, Universitas Syiah Kuala, Indonesia

Abstract

Cassava is the third most important calorie source in tropical area after rice and corn. The microorganism associated with cassava roots may be potent and useful for application to promote plant growth. Plant growth promoting rhizobacteria  is a group of benefical bacteria that live in rhizosphere. The aim of this study was to isolate and to identify the potential Plant Growth Promoting Rhizobacteria (PGPR) from cassava rhizosphere soil. The study consisted of isolation and identification of bacteria based on morphological and biochemical characters, hypersensitive reaction test, the ability to solubilize potassium and phosphate, and the ability to inhibit the growth of pathogen Sclerotium rolfsii. A total of nine bacteria isolates were succesfully isolated from Cassava rhizosphere soil. Those isolates suspected as Micrococcus sp.1, Micrococcus sp.2, Micrococcus sp.3, Micrococcus sp.4, Micrococcus sp.5, Micrococcus sp.6, Neisseria sp.1, Neisseria sp.2 and Bacillus sp. All nine isolates did not show hypersensitivity reactions. Only Neisseria sp.1 and Neisseria sp. 2 were able to solubilize potassium and phosphate. All isolates were able to inhibit the growth of S. rolfsii. The highest inhibition was done by Micrococcus sp.4 (51.46 %). The physical and chemical properties of cassava rhizosphere soil affected the type of bacteria found in this study. The result confirmed that the potential isolates obtained from cassava rhizosphere soil can be plant growth promoters. The present study suggested that PGPR isolates might have potential in future field applications as plant growth promoters or biocontrol agents.

Keywords

isolation; plant growth promoting rhizobacteria (PGPR); phosphate; potassium; Sclerotium rolfsii

Full Text:

PDF

References

Abidin, Z., Aini, L. Q., & Abadi, A. L. (2015). Pengaruh bakteri Bacillus sp. dan Pseudomonas sp. terhadap pertumbuhan jamur patogen Scle-rotium rolfsii Sacc. penyebab penyakit rebah semai pada tanaman kedelai. Jurnal Hama dan Penyakit Tumbuhan, 3(1), 2338–4336.

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhi-zobacteria: Current perspective. Journal of King Saud University-Science, 26(1), 1–20.

Babu, A. N., Jogaiah, S., Ito, S., Nagaraj, A. K., & Tran, L. S. P. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is cor-related with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62–73.

Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exu-dates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

Balintâ€Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163–1178.

Bennett, J. S., Jolley, K. A., Earle, S. G., Corton, C., Bentley, S. D., Parkhill, J., & Maiden, M. C. J. (2012). A genomic approach to bacterial tax-onomy: An examination and proposed reclassi-fication of species within the genus Neisseria. Microbiology, 158(Pt 6), 1570.

Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizo-sphere. FEMS Microbiology Ecology, 68(1), 1–13.

Bradbury, E. J., Duputié, A., Delêtre, M., Roullier, C., Narváezâ€Trujillo, A., Manuâ€Aduening, J. A., Emshwiller, E., & McKey, D. (2013). Geo-graphic differences in patterns of genetic dif-ferentiation among bitter and sweet manioc (Manihot esculenta subsp. esculenta; Euphor-biaceae). American Journal of Botany, 100(5), 857–866.

Chau, J. F., Bagtzoglou, A. C., & Willig, M. R. (2011). The effect of soil texture on richness and diversity of bacterial communities. Envi-ronmental Forensics, 12, 333–341.

Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phyto-pathology, 53, 97–119.

Cowan, S. T. (2004). Cowan and Steel’s manual for the identification of medical bacteria (3rd ed.). Cambridge university press.

Devy, N. F., Syarif, A. A., & Aryawaita, A. (2018). Identifikasi penciri morfologi dan kualitas plasma nutfah lokal ubi kayu (Manihot esculenta Crantz) Sumatra Barat. Buletin Plas-ma Nutfah, 24(1), 53–62.

Eliza, Munif, A., & Djatnika, I. (2007). Karakter fisiologis dan peranan antibiosis bakteri pe-rakaran Graminae terhadap Fusarium dan pemacu pertumbuhan tanaman pisang. Jurnal Hortikultura, 17(2), 150–160.

Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mecha-nisms, promotion of plant growth, and future prospects - a review. Journal of Soil Science and Plant Nutrition, 17(4), 897–911.

Eviati & Sulaeman (2009). Analisis kimia tanah, tanaman, air dan pupuk. Balai Penelitian Tanah.

George, T. S., Gregory, P. J., Robinson, J. S., & Buresh, R. J. (2002). Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant and Soil, 246(1), 65–73.

Ghevariya, K. K., & Desai, P. B. (2014). Rhizo-bacteria of sugarcane: in vitro screening for their plant growth promoting potentials. Re-search Journal of Recent Sciences, 3, 52–58.

Glick, B. R. (2012). Plant growth-promoting bacte-ria: Mechanisms and applications. Scientifica, 2012.

Gofar, N., Munawar, M., Widjajanti, H., & Mulya, A. P. (2016). Eksplorasi bakteri antagonis asal jaringan dan rizosfer tanaman karet untuk menekan pertumbuhan bakteri proteolitik pada bahan olahan karet (BOKAR). Jurnal Ilmu Tanah dan Lingkungan, 16(2), 61–66.

Huang, Z., He, L., Sheng, X., & He, Z. (2013). Weathering of potash feldspar by Bacillus sp. L11. Wei Sheng Wu Xue Bao= Acta Microbio-logica Sinica, 53(11), 1172–1178.

Ismangil, & Hanudin, E. (2005). Degradasi miner-al batuan oleh asam-asam organik. Ilmu Tanah dan Lingkungan, 5(1), 1–17.

Kalayu, G. (2019). Phosphate solubilizing micro-organisms: Promising approach as biofertilizers. International Journal of Agronomy, 2019, 1–7.

Kaufmann, S. H. E., & Schaible, U. E. (2005). 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle Bacillus. Trends in Microbiology, 13(10), 469–475.

Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S., & Rasheed, M. (2009). Phosphorus sol-ubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci., 1(1), 48–58.

Kumar, A., Kumar, A., & Patel, H. (2018). Role of microbes in phosphorus availability and acqui-sition by plants. International Journal of Cur-rent Microbiology and Applied Sciences, 7(5), 1344–1347.

Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mecha-nisms of plant-microbe-metal interactions: Rel-evance for phytoremediation. Frontiers in Plant Science, 7, 918.

Maurya, B. R., Meena, V. S., & Meena, O. P. (2014). Influence of inceptisol and alfisol’s po-tassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos, 27(1), 181–187.

Meena, V. S., Maurya, B. R., & Bahadur, I. (2014). Potassium solubilization by bacterial strain in waste mica. Bangladesh Journal of Botany, 43(2), 235–237.

Mudili, J. (2007). Introductory practical microbi-ology. Alpha Science International Limited.

Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bac-teria and their efficiency on the growth of maize. Journal of Genetic Engineering and Bi-otechnology, 15(2), 379–391.

Pandey, A., & Singh, A. (2013). A comparative study on secondary metabolites producing mi-crobes isolated from rhizospheric & non-rhizospheric region of Azadirachta Indica and Oscimum tenuiflorum. International Journal of Pharmaceutical Research & Allied Sciences, 2(1), 36–48.

Parvathi, A., Krishna, K., Jose, J., Joseph, N., & Nair, S. (2009). Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India. Brazilian Journal of Microbiology, 40(2), 269–275.

Putriani, P., Fitri, L., & Ismail, Y. S. (2019). The potential endophytic cacteria isolated from rice (Oryza sativa) as biofertilizer. Biosaintifika: Journal of Biology & Biology Education, 11(2), 178–185.

Sadiq, H. M., Jahangir, G. Z., Nasir, I. A., Iqtidar, M., & Iqbal, M. (2013). Isolation and character-ization of phosphate-solubilizing bacteria from rhizosphere soil. Biotechnology & Biotechno-logical Equipment, 27(6), 4248–4255.

Shanware, A. S., Kalkar, S. A., & Trivedi, M. M. (2014). Potassium solublisers: Occurrence, mechanism and their role as competent bioferti-lizers. International Journal of Current Micro-biology and Applied Sciences, 3(9), 622–629.

Sheng, X. F., & He, L. Y. (2006). Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadi-an Journal of Microbiology, 52(1), 66–72.

Silva-Sánchez, A., Soares, M., & Rousk, J. (2019). Testing the dependence of microbial growth and carbon use efficiency on nitrogen availa-bility, pH, and organic matter quality. Soil Biol-ogy and Biochemistry, 134, 25–35.

Simarmata, R., Widowati, T., Dewi, T. K., Leka-tompessy, S. J. R., & Antonius, S. (2020). Iso-lation, screening and identification of plant growth-promoting endophytic bacteria from Theobroma cacao. Biosaintifika: Journal of Bi-ology & Biology Education, 12(2), 155–162.

Thakuria, D., Talukdar, N. C., Goswami, C., Hazarika, S., Boro, R. C., & Khan, M. R. (2004). Characterization and screening of bac-teria from rhizosphere of rice grown in acidic soils of assam. Current Science, 86(7), 978–985.

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustain-ability-A review. Molecules, 21(5), 1–17.

Walpola, B. C., & Yoon, M. H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Re-search, 6(37), 6600–6605.

Wieser, M., Denner, E. B. M., Kämpfer, P., Schu-mann, P., Tindall, B., Steiner, U., Vybiral, D., Lubitz, W., Maszenan, A. M., & Patel, B. K. C. (2002). Emended descriptions of the genus Mi-crococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). In-ternational Journal of Systematic and Evolu-tionary Microbiology, 52(2), 629–637.

Wulandari, H., Zakiatulyaqin, Z., & Supriyanto, S. (2012). Isolasi dan pengujian bakteri endofit dari tanaman lada (Piper nigrum L.) sebagai an-tagonis terhadap patogen hawar beludru (Sep-tobasidium sp.). Perkebunan dan Lahan Tropi-ka, 2(2), 23–31.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.