Indigenous Trichoderma harzianum as Biocontrol toward Blight Late Disease and Biomodulator in Potato Plant Productivity
(1) Biology Department, Faculty of Sciences and Mathematic, Universitas Diponegoro
(2) Agribusiness Department, Sekolah Tinggi Ilmu Pertanian Farming Semarang
(3) Biology Department, Faculty of Sciences and Mathematic, Universitas Diponegoro
(4) Biology Department, Faculty of Sciences and Mathematic, Universitas Diponegoro
(5) Institut Pertanian Stiper Yogyakarta
Abstract
Indigenous Trichoderma has widely used in late-blight epidemic areas in Magelang, Indonesia as biocontrol and biomodulator. But it application still lacks of scientific proof, even though it is potently to be developed. Therefore, this study aims to identify and evaluate indigenous Trichoderma application in eradicating late blight and increase productivity. This research was an experimental posttest-only using six experimental plots, with P0 plot with no treatment. The solution was made by dissolve indigenous Trichoderma solid-starter into water (m/v), then used for treatment. The treatment plots including: two groups of sprayed-only plots with doses of 100 g/ 10 L of solution for P1 and 150 g/ 10 L of solution for P2; and two group treated with sprayed-poured method using doses of 100 g/ 10 L of solution for P3 and 150 g/ 10 L of solution for P4. The positive control group was P5 group, treated using chemical pesticides and tuber booster. The microscopic identification revealed that the local bioagent was Trichoderma harzianum species. Application of T. harzianum in P4 was significantly increased the productivity. However, it was not effective in increasing growth, but able to reduce the intensity of late blight disease. The research revealed that native Trichoderma is able to be used as anti-infectious agent and potentially improve the quality of potato plants. In the future, this research may worthwhile for farmers to develop and produce trustworthy and proven Trichoderma-based biocontrol and help them increase the potato production economically.
Keywords
Full Text:
PDFReferences
Adnan, M., Islam, W., Shabbir, A., Khan, K. A., Ghramh, H. A., Huang, Z., Chen, H. Y. H., & Lu, G. dong. (2019). Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog., 129, 7–18.
Al-Askar, A. A., Ezzat, A. S., Ghoneem, K. M., & Saber, W. I. A. (2016). Trichoderma harzianum WKY5 and its gibberellic acid control of Rhizoctonia solani, improve sprouting, growth and productivity of potato. Egypt. J. Biol. Pest Control, 26(4), 787–796.
Bae, S. J., Park, Y. H., Bae, H. J., Jeon, J., & Bae, H. (2017). Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp. J. Microbiol. Biotechnol., 27(6), 1157–1162.
Bairwa, A., Venkatasalam, E. P., Sudha, R., Umamaheswari, R., Sharma, S., & Singh, B. P. (2016). Management of late blight disease in kharif potato at Karnataka. Potato J., 43(2), 173–181.
Beals, K. A. (2019). Potatoes, Nutrition and Health. Am. J. Potato Res., 96(2), 102–110.
BPS, [Badan Pusat Statistik]. (2019a). Luas Panen dan Produksi Kentang 2017-2019. https://jateng. bps.go.id/indicator/55/731/1/luas-panen-dan-produksi-kentang.html
BPS, [Badan Pusat Statistik]. (2019b). Produksi Tanaman Sayuran 2019. https://www.bps.go.id/ indicator/55/61/1/produksi-tanaman-sayuran.html
Halterman, D. A., Kramer, L. C., Wielgus, S., & Jiang, J. (2008). Performance of transgenic potato containing the late blight resistance gene RB. Plant Dis., 92(3), 339–343.
Haryuni. (2015). The Effect of Hot Water Treatment and Dose Trichoderma sp. to Plant Tissue of Seedling Growth from Bud Chips of Sugarcane (Saccharum officinarum). Biosaintifika J. Biol. Biol. Educ., 7(1), 29–36.
Hasenbein, S., Lawler, S. P., Geist, J., & Connon, R. E. (2016). A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environ. Toxicol. Chem., 35(1), 218–232.
Kai, K., Mine, K., Akiyama, K., Ohki, S., & Hayashi, H. (2018). Anti-plant viral activity of peptaibols, trichorzins HA II, HA V, and HA VI, isolated from Trichoderma harzianum HK-61. J. Pestic. Sci., 43(4), 283–286.
Kholifah, E., & Mustanir, A. (2019). Food Policy and Its Impact on Local Food. J. Asian Rev. Public Aff. Policy, 4(3), 1–15.
Kim, K. H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Sci. Total Environ., 575, 525–535.
Kurniawan, H., Sulastrini, I., & Suganda, T. (2018). Uji Ketahanan Klon Kentang Hasil Pesilangan Atlantic x Repita terhadap Penyakit Hawar Daun Phytophthora infestans. Agrikultura, 29(2), 100.
Leesutthiphonchai, W., Vu, A. L., Ah-Fong, A. M. V., & Judelson, H. S. (2018). How does phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology, 108(8), 916–924.
Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. In S. I. P. Switzerland (Ed.), Plant, Soil and Microbes: Implications in Crop Science.
Majeed, A., Muhammad, Z., Ullah, Z., Ullah, R., & Ahmad, H. (2017). Late blight of potato (Phytophthora infestans) I: fungicides application and associated challenges. Turkish J. Agric. - Food Sci. Technol., 5(3), 261.
Naher, L., Yusuf, U. K., Habib, S. H., Huynh, K. Y., & Siddiquee, S. (2018). Mycoparasitism activity of trichoderma harzianum associated with chitinase expression against Ganoderma boninense. Pakistan J. Bot., 50(3), 1241–1245.
Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatal. Agric. Biotechnol., 21(July), 101326.
Napitupulu, T. P. (2020). Evaluation of antifusarium and auxin production of Trichoderma virens InaCC F1030 isolated from rhizosphere of banana. J. Microb. Syst. Biotechnol., 2(1), 31–39. https://doi.org/10.37604/jmsb.v2i1.39
Purwantisari, S., Priyatmojo, A., Sancayaningsih, R. P., Kasiamdari, R. S., & Budihardjo, K. (2018a). Systemic inducing resistance against late blight by applying antagonist Trichoderma Viride. J. Phys. Conf. Ser., 1025(1).
Purwantisari, S., Priyatmojo, A., Sancayaningsih, R. P., Kasiamdari, R. S., & Budihardjo, K. (2018b). The resistance of potatoes by application of Trichoderma viride antagonists fungus. E3S Web Conf., 73(July 2013).
Rachman, T., & Napitupulu, D. (2018). User acceptance analysis of potato expert system application based on TAM approach. Int. J. Adv. Sci. Eng. Inf. Technol., 8(1), 185–191.
Robinson, M. (2011). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Ref. Rev., 25(4), 43–44.
Samson, R. A., Houbraken, J., Thrane, U., & Frisvad, J. C. (2019). Food and indoor fungi. Westerdijk Fungal Biodiversity Institute: The Netherlands.
Schepers, H., Gunadi, N., Putter, H. De, Moekasan, T. K., Prabaningrum, L., & Karjadi, A. K. (2016). Results of potato late blight demonstrations in Pangalengan, Indonesia November 2015-February 2016. Wageningen Universsity Research: The Netherland.
Soesanto, L., Ilahiyyah, H., Mugiastuti, E., Manan, A., & Rostaman, R. (2020). Raw secondary metabolites of Trichoderma harzianum T10 in tapioca flour towards cucumber damping-off. Biosaintifika J. Biol. Biol. Educ., 12(2), 226–234.
Subhani, M. N. (2016). Phytophthora infestans (Mont.) de Bary (Peronosporales : Pythiaceae): a review of life history, evolutionary status of pathogen, host range, mating types, symptomology, disease cycle, means of dispersal, extent of losses, and management. J. Glob. Agric. Ecol., 5(2), 108–126.
Thornton, M. (2019). Potato growth and development. In J. C. Stark., P. Nolte., and M. Thornton. Potato production systems (pp. 111–154). Springer Nature: Switzerland.
Waghunde, R. R., Rahul, M. S., & Ambalal, N. S. (2016). Trichoderma: A significant fungus for agriculture and environment. African J. Agric. Res., 11(22), 1952–1965.
Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci., 65(2), 168–178.
Zubrod, J. P., Englert, D., Wolfram, J., Rosenfeldt, R. R., Feckler, A., Bundschuh, R., Seitz, F., Konschak, M., Baudy, P., Lüderwald, S., Fink, P., Lorke, A., Schulz, R., & Bundschuh, M. (2017). Long-term effects of fungicides on leaf-associated microorganisms and shredder populations—an artificial stream study. Environ. Toxicol. Chem., 36(8), 2178–2189.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.