β-Glucans Production of Saccharomyces cerevisiae by Using Tofu Waste as Animal Feed Supplement

Endah Rita Sulistya Dewi(1), Ary Susatyo Nugroho(2), Atip Nurwahyunani(3), Maria Ulfah(4),


(1) Departement of Mathematics, Sciences and Information Technology, Universitas PGRI Semarang
(2) Departement of Mathematics, Sciences and Information Technology, Universitas PGRI Semarang, Indonesia
(3) Departement of Mathematics, Sciences and Information Technology, Universitas PGRI Semarang, Indonesia
(4) Departement of Mathematics, Sciences and Information Technology, Universitas PGRI Semarang, Indonesia

Abstract

Tofu industrial waste has the potential to become contaminant when it is not maximum processed, so it needs appropriate treatment to minimize the occurrence of pollution. β-Glucans can be produced from the yeast cell wall of Saccharomyces cerevisiae.As a feed supplement, β-Glucans have been used for an immunostimulant because it can increase the immune system. This study aimed to establish a suitable technology to produce β-Glucans fromSaccharomyces cerevisiae by utilize tofu waste as feed supplement. The Completely Randomized Design (CRD) model was used in the experimental method. This study used an experimental method with a Completely Randomized Design (CRD) model.The treatment given wereP1: 1kg of tofu waste + 1kg of bran +0.2 kg fish meal + 0.2 lt molasses + 5.5 gSaccharomyces cerevisiae; P2: 1kg of tofu waste + 1kg of bran +0.2 kg fish meal + 0.2 lt molasses + 6.5 g Saccharomyces cerevisiae; P3: 1kg of tofu waste + 1kg bran + 0.2 kg fish meal +0.2 lt molasses + 7.5 g Saccharomyces cerevisiae. Each treatment was repeated 3 times, and fermented for five days.The results found that P1 by Saccharomyces cerevisiae 5.5 g was the best formulation to produced crude β-Glucans by weight of 25.9 g/kg of waste. Production of β-Glucans as an animal feed supplement is a waste-based feed technology development which is expected to increase livestock production both in quality and quantity.

Keywords

Tofu Waste; β-Glucans; Saccharomyces cerevisiae

Full Text:

PDF

References

Agbogbo, F.K., Kelly, G.C., Smith, M.T., Wenger, K. And Jeffries, T.W. (2007).The Effect Initial Cell Concentration on Xylose Fermentation by Pichiastipitis. Journal of Applied Biochemistry and Biotechnology, 41, 2331-2336.

Amaria, Agustini, R., Cahyaningrum, S.E., Santosa, S.J dan Narsito. (2007). Adsorbsi Seng (II) Menggunakan Biomassa Saccharomyces cereviceae yang Diimobilisasi pada Silika Secara Sol Gel. Akta Kimindo. 2 (2), 63-74

Dewi, E R S., Anang M. LegowodanMunifatulIzzati. (2016). Absorption of Organic Compounds by Saccharomyces cerevisiae on Industrial Waste Media. International Journal of Applied Environmental Sciences. 11 (1), 27-34

Dewi, E R S., Anang M. Legowo, MunifatulIzzati. (2017). The Use of Non Dairy Creamer Wastewater As The Growth Medium OfSaccharomyces cerevisiae For Single-Cell Protein Production. Advance Science Letters. 23 (3),2438-2440

Di Domenico, J., Canova, R., Soveral, L, F., Nied, C, O., Costa, M, M., Frandoloso, R., Kreutz, L, C. (2017). Immunomodulatory effects of dietary β-glucan in silver cat fish (Rhamdia quelen). Pesquisa Veterinária Brasileira. 37(1): 73-78.

Didu,Nurhidayah.(2010).Produksi Bioetanol dari Sirup Glukosa Ubi Jalar (IpomeabatatasL) dengan Menggunakan Saccharomyces cerevisiae, Institut Pertanian Bogor.

Dietrich Muszalska, A., Olas, B., Kontek, B., Rabe Jablonska, J., (2011). Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biological Macromolecules. 49, 113-116.

Farida. (2019). Analisis Biaya dan Nilai Tambah Pengolahan Wine Molase Tebu di Karang Asem Bali. Jurnal Riset Manajemen dan Bisnis (JRMB) Fakultas Ekonomi UNIAT. 4 (3), 339-348

Ho, H. V., Sievenpiper, J. L., Zurbau, A., Blanco Mejia, S., Jovanovski, E., Au Yeung, F., Jenkins, A. L, Vuksan, V. (2016). The effect of oat β-glucan on LDL cholesterol, non HDL cholesterol and apoB for CVD risk reduction: A systematic review and meta analysis of randomised controlled trials. British Journal of Nutrition. 116 (8), 1369-1382.

Hwang Jangsun, Kyungwoo Lee, Assaf. A. Gilad & Jonghoon Choi. (2018). Synthesis of Beta-glucan Nanoparticles for the Delivery of Single Strand DNA. Biotechnology and Bioprocess Engineering. 23,144–149

Jayus, Jay., Sony Suwasono, Ike Wijayanti. (2017). Produksi Bioetanol secara SHF dan SSF Menggunakan Aspergillus niger, Trichoderma viride dan New Aule Instant Dry Yeast pada Media Kulit Ubi Kayu. Jurnal Agroteknologi. 11 (1), 61-68.

Li, F., Wang, Z., Liu, J., Li, W., (2018). Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae. International Journal of Biological Macro molecules. 115, 572- 579.

Masturi, Amelia Cristina, Nurul Istiana, Sunarno, Pratiwi Dwijananti. (2017). Ethanol Production from Fermentation of Arum Manis Mango Seeds (Mangifera indica L.) using Saccharomyces cerevisiae. Jurnal Bahan Alam Terbarukan. 6 (1), 56-60.

Mufarida and Diyah Probowulan. (2019).Optimization and Utilization of Tofu Waste by Using Separator Machine Technology to Increase the Income of Home Industries and Create Environment-Friendly Industries Through Diversification of Various Foods Processing. Kontribusia. 2 (2) , 48-52.

Mukhtar, K., Asgher, M., Afghan, S., Hussain, K. And Zia-ul-Hussnain, S. (2010).Comparative Study on Two Commercial Strain of Saccharomyces cerevisiae for Optimum Ethanol Production on Industrial Scale.Journal of Biomedicine and Biotechnology, 1-5.

Peter, MJ. Casado, Bedmar M. (2018). A B-Glucan -Based Dietary Fiber Reduces Mast Cell-Induced Hyperpermeability in Ileum From Patients with Crohn’s Disease and Control Subjects. Inflammatory Bowel Diseases. 24 (1) ,166-178.

Sima, Petr., Luca Vannucci, Vaclav Vetvicka. (2018). β-glucans and cholesterol. International Journalof Molecular Medicine. 41 (4), 1799-1808.

Stier H, Ebbeskotte V, Gruenwald J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr Journal, 13, 38.

Thierie, Jacques. (2018). Mathematical Modeling of Growth Lag Phase Formulated on the Basis of Mass and Number of AxenicMicrobial Cells in a Population. EC Microbiology 14(9), 552-566.

Tjokrokusumo, Donowati. (2015). Diversity of Edible Mushrooms on their Beta Glucans Content and Health Benefits. Prossiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 1(6) ,1520-1523.

Wahyuningsih, S PA., Nadyatul Ilma Indah Savira, and Win Darmanto. (2016). Effect on Polysaccharide Krestin from Coriolus versicolor Extract onPhagocytic Activity and Capacity of Mus musculus Exposed byPseudomonas aeruginosa. Biosaintifika 8 (3), 308-313.

Yuan, B., Ritzoulis, C., Chen, J. (2019). Rheological investigations of beta glucans functionality: Interactions with mucin. Food Hydrocolloids. 87,180-186.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.