Effects of Light Environments on Leaf Traits and Phenotypic Plasticity of Canna indica

Yorianta Hidayat Sasaerila(1), Sakinah Sakinah(2), Nita Noriko(3), Risa Swandari Wijihastuti(4),


(1) Department of Biology, Universitas Al Azhar Indonesia
(2) Department of Biology, Universitas Al Azhar Indonesia
(3) Department of Biology, Universitas Al Azhar Indonesia
(4) Department of Biology, Universitas Al Azhar Indonesia

Abstract

Canna indica L (African arrowroot), is a beneficial, multi-use tropical perennial with a worldwide distribution, but relatively unexplored. This plant has the potential to be developed as a food crop in an intercropping system, utilizing idle land under commercial plantations such as rubber or teak. This study aimed to determine the best light-growing conditions for C. indica. A completely randomized design was used with growth light as the treatment consisting of 25%, 50%, and 100% of natural light, respectively. Leaf traits, growth characteristics, and phenotypic plasticity were used to measure C. indica’s response to different treatments. The results of this study showed that C. indica grown in low light has the best growth with increased height, leaf area, root and shoot dry weights, but decreased leaf thickness, which caused the increase in specific leaf area, leaf area ratio, and leaf weight ratio, but decreased root to shoot ratio. Based on leaf traits and biomass allocation, the phenotypic plasticity index was 0.23, a typical number for shade tolerant species. These findings were the first time to be reported for C. indica. For agroforestry practices, it can be recommended that C. indica be used as an intercropping plant under tree canopies.

Keywords

Leaf Traits; Light Environment; Phenotypic plasticity; Relative Growth Rate; Shade Tolerant;

Full Text:

PDF

References

Al-Snafi, A. E. (2015). Bioactive components and pharmacological effects of Canna indica - an overview. International Journal of Pharmacology & Toxicology, 5(2): 71–75. https://www.researchgate.net/profile/Ali-Al-Snafi/publication/297715332_Bioactive _components_and_pharmacological_effects_of_Canna_indica-_An_overview/links/ 58a2e3d9a6fdccf5e97638d3/Bioactive-components-and-pharmacological-effects-of-Canna-indica-An-overview.pdf

Algar, A. F. C., Umali, A. B., & Tabayong, R. R. P. (2019). Physicochemical and functional properties of starch from Philippine edible Canna (Canna indica L.) Rhizomes. Journal of Microbiology, Biotechnology and Food Sciences, 9(1), 34–37. https://doi.org/10.15414/jmbfs.2019.9.1.34-37

Andrade-Mahecha, M. M., Tapia-Blácido, D. R., & Menegalli, F. C. (2012). Physical-chemical, thermal, and functional properties of achira (Canna indica L.) flour and starch from different geographical origins. Starch/Staerke, 64(5), 348–358. https://doi.org/10.1002/star.201100149

Asmelash, F. (2017). Two PhAR levels comparative photosynthetic gas exchange study on Canna indica and Morus alba grown in the Natural Sciences College of the Addis Two PhAR level comparative photosynthetic gas exchange study on Canna indica and Morus alba grown in the Natural [Technical Report. Addis Ababa University College of Natural Sciences Department of Plant Biology and Biodiversity Management]. https://doi.org/10.13140/RG.2.2.17340.95368

Ayusman, S., Duraivadivel, P., Gowtham, H. G., Sharma, S., & Hariprasad, P. (2020). Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. Food Bioscience, 35, Article e100544. https://doi.org/10.1016/j.fbio.2020.100544

Azeñas, V., Janner, I., Medrano, H., & Gulías, J. (2019). Evaluating the establishment performance of six native perennial Mediterranean species for use in extensive green roofs under water-limiting conditions. Urban Forestry and Urban Greening, 41, 158–169. https://doi.org/10.1016/j.ufug.2019.04.002

BPS (Badan Pusat Statistik). (2017). Climate data of DKI Jakarta. https://jakarta.bps.go.id/

BPS (Badan Pusat Statistik). (2020). Impor Biji Gandum dan Meslin Menurut Negara Asal Utama, 2010-2019. https://www.bps.go.id/statictable/2019/02/14/2016/impor-biji-gandum-dan-meslin-menurut-negara-asal-utama-2010-2019.html

CABI. (2020). CABI Compendium: Invasive species Wallingford, UK: Centre for Agriculture and Biosciences International. Canna indica (Canna lilly). https://www.cabi.org/isc/datasheet/14575

Caine, R.S., Yin, X., Sloan, J., Harrison, E.L., Mohammed, U., Fulton, T., Biswal, A.K., Dionora, J., Chater, C.C., Coe, R.A., Bandyopadhyay, A., Murchie, E.H., Swarup, R., Quick, W.P. and Gray, J.E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384. https://doi.org/10.1111/nph.15344

Ciciarelli, M. de las M. (2012). Life Cycle in Natural Populations of Canna indica L. In Argentina. In X. Zhang (Ed.), Phenology and Climate Change (1st Ed., pp. 101–116). InTech, Croatia.

Dwyer, J. M., Hobbs, R. J., & Mayfield, M. M. (2014). Specific leaf area responses to environmental gradients through space and time. Ecology, 95(2), 399–410. https://doi.org/10.1890/13-0412.1

Ediviani, W., Priadi, C. R., & Moersidik, S. S. (2018). Nutrient uptake from liquid digestate using ornamental aquatic macrophytes (Canna indica, Iris pseudacorus, Typha latifolia) in a constructed wetland system. Journal of Physics: Conference Series, 1022 (1). https://doi.org/10.1088/1742-6596/1022/1/012052

Evans, J. R., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24(8), 755–767. https://doi.org/10.1046/j.1365-3040.2001.00724.x

Gianoli, E., & Valladares, F. (2012). Studying phenotypic plasticity: The advantages of a broad approach. Biological Journal of the Linnean Society, 105(1), 1–7. https://doi.org/10.1111/j.1095-8312.2011.01793.x

Glinos, E., & Cocucci, A. A. (2011). Pollination biology of Canna indica (Cannaceae) with particular reference to the functional morphology of the style. Plant Systematics and Evolution, 291, 49–58. https://doi.org/10.1007/s00606-010-0379-x

Hunt, R. (1990). Basic growth analysis (First). Unwin Hyman Ltd.

Ifandari, Widyarini, S., Hartanto Nugroho, L., & Pratiwi, R. (2020). Phytochemical analysis and cytotoxic activities of two distinct cultivars of ganyong rhizomes (Canna indica) against the widr colon cancer cell line. Biodiversitas, 21(4), 1660–1669. https://doi.org/10.13057/biodiv/d210447

Jagodziński, A. M., Dyderski, M. K., Rawlik, K., & Katna, B. (2016). Seasonal variability of biomass, total leaf area and specific leaf area of forest understory herbs reflects their life strategies. Forest Ecology and Management, 374, 71–81. https://doi.org/10.1016/j.foreco.2016.04.050

Jiang, X., Song, X., Chen, Y., & Zhang, W. (2014). Research on biogas production potential of aquatic plants. Renewable Energy, 69, 97–102. https://doi.org/10.1016/j.renene.2014.03.025

Kidner, C. A., & Timmermans, M. C. P. (2010). Signaling sides. Adaxial-abaxial patterning in leaves. Current Topics in Developmental Biology, 91(C), 141–168. https://doi.org/10.1016/S0070-2153(10)91005-3

Leuschner, C., & Meier, I. C. (2018). The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees. Perspectives in Plant Ecology, Evolution and Systematics, 33, 89–103. https://doi.org/10.1016/j.ppees.2018.05.003

Li, X., Schmid, B., Wang, F., & Paine, C. E. T. (2016). Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PLoS ONE, 11(3), 1–13. https://doi.org/10.1371/journal.pone.0150644

Mao, P., Zang, R., Shao, H., & Yu, J. (2014). Functional trait trade-offs for the tropical montane rain forest species responding to light from simulating experiments. Scientific World Journal, 2014. https://doi.org/10.1155/2014/649031

McCarthy, M. C., & Enquist, B. J. (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21(4), 713–720. https://doi.org/10.1111/j.1365-2435.2007.01276.x

Miao, M. Z., Liu, H. F., Kuang, Y. F., Zou, P., & Liao, J. P. (2014). Floral vasculature and ontogeny in Canna indica. Nordic Journal of Botany, 32(4), 485–492. https://doi.org/10.1111/j.1756-1051.2013.00311.x

Moossa, P. P., Thulasi, V., Raji, P., & Prajesh, M. T. (2015). Exploration of plant biodiversity for nutrient harvesting. International Journal of Environmental and Agriculture Research, 1(8): 12–16. https://ijoear.com/issue-detail/issue-December-2015

Neufeld, H. S., & Young, D. R. (2014). Ecophysiology of the Herbaceous Layer in Temperate Deciduous Forests. In F. S. Gilliam (Ed.), The herbaceous layer in forests of eastern North America (2nd Ed., pp. 35–112). Oxford University Press.

Okonwu, K., & Ariaga, C. A. (2016). Nutritional evaluation of various parts of Canna indica L. Annual Research and Review in Biology, 11(4), 1–5. https://doi.org/10.9734/ARRB/2016/31029

Pandey, S. K., & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation. Journal of Botany, 2011, 1–6. https://doi.org/10.1155/2011/658240

Piyachomkwan, K., Chotineeranat, S., Kijkhunasatian, C., Tonwitowat, R., Prammanee, S., Oates, C. G., & Sriroth, K. (2002). Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products, 16(2002), 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1

Plant for a Future. (2020). Canna indica Indian Shot PFAF Plant Database. https://pfaf.org/user/plant.aspx?latinname=Canna+indica

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., Mommer, L., … Niklas, K. J. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x

Rahajeng, W., Restuono, J., Indriani, F. C., & Purwono, P. (2020). Genetic Parameters of Agronomic Traits in Sweetpotato Accessions. Biosaintifika: Journal of Biology & Biology Education, 12(2), 240–246. https://doi.org/10.15294/biosaintifika.v12i2.23780

Rosbakh, S., Römermann, C., & Poschlod, P. (2015). Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany, 125(2), 79–86. https://doi.org/10.1007/s00035-015-0150-6

Rozendaal, D. M. A., Hurtado, V. H., & Poorter, L. (2006). Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology, 20(2), 207–216. https://doi.org/10.1111/j.1365-2435.2006.01105.x

Rudisirisak, K. (2019). Artificial Paper From Puttaraksa (Canna indica Linn) and Plubplueng (Crinum asiaticum). International Journal of GEOMATE, 16(55), 105–112. https://doi.org/10.21660/2019.55.7188

Sari, N., Suryadiantina, Daryono, B. S., & Purnomo. (2018). Variability and intraspecific classification of Indonesian edible canna (Canna indica L.) based on RAPD marker analysis. SABRAO Journal of Breeding and Genetics, 50(2): 156–167. http://sabraojournal.org/sabrao-journal-of-breeding-and-genetics-volume-50-issue-2-june-2017/

Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2019). Plant Ecology (Second). Springer-Verlag GmbH Germany, part of Springer Nature 2019. https://doi.org/10.1007/978-3-662-56233-8_1 1

Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology, 20(4), 565–574. https://doi.org/10.1111/j.1365-2435.2006.01135.x

Subhashini, V., & Swamy, A. (2014). Phytoremediation of metal (PB, NI, ZN, CD, and CR) contaminated soils using Canna indica. Current World Environment, 9(3), 780–784. https://doi.org/10.12944/cwe.9.3.26

Sudiana, E., Yani, E., Prayoga, L., Darsono, D., Riwidiharso, E., & Santoso, S. (2020). Adaptations of Three Cash Crops to Climate Change. Biosaintifika: Journal of Biology & Biology Education, 12(2), 247–253. https://doi.org/10.15294/biosaintifika.v12i2.23489

Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94(6), 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x

Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81(7), 1925–1936. https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2

Wafa, S. N., Mat Taha, R., Mohajer, S., Mahmad, N., & Ahmed, A. B. A. (2016). Organogenesis and ultrastructural features of in vitro grown Canna indica L. BioMed Research International, 2016(2016), 9. https://doi.org/10.1155/2016/2820454

Wyka, T. P., Oleksyn, J., Żytkowiak, R., Karolewski, P., Jagodziński, A. M., & Reich, P. B. (2012). Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: A common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species. Oecologia, 170(1), 11–24. https://doi.org/10.1007/s00442-012-2279-y

Zhang, Z., Rengel, Z., & Meney, K. (2008). Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquatic Botany, 89(3), 317–323. https://doi.org/10.1016/j.aquabot.2008.03.007

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.