Soybean Selection Against Cercospora Leaf Blight Disease Caused By Cercospora kikuchii Based on Anatomical Resistance

Fajar Husen(1), Nuniek Ina Ratnaningtyas(2), Siti Samiyarsih(3), Juni Safitri Muljowati(4), Nur Fitrianto(5),


(1) Department of Medical Laboratory of Technology, Sekolah Tinggi Ilmu Kesehatan Bina Cipta Husada
(2) Department of Biology, Faculty of Biology, Universitas Jenderal Soedirman
(3) Department of Biology, Faculty of Biology, Universitas Jenderal Soedirman
(4) Department of Biology, Faculty of Biology, Universitas Jenderal Soedirman
(5) Agriculture and Food Organization, National Research and Innovation Agency (BRIN)

Abstract

Soybean (Glycine max L. Merr.) is the third food crop commodity after rice and maize in Indonesia. This plant is also known as the most important source of vegetable protein, which is relatively inexpensive, but a decrease in soybean productivity can occur due to infection with disease-causing pathogens, one of is Cercospora kikuchii which causes Cercospora leaf blight (CLB). The research objectives were to determine the anatomical resistance and disease severity of soybean cultivars against CLB. The method was an experiment with a completely randomized design (CRD) factorial pattern; factor 1 being soybean cultivars (Dering, Slamet, Grobogan, Wilis) and factor 2, namely pathogen inoculation (0 conidiospores/mL and 105 conidiospores/mL). Anatomical method preparations using paraffin, staining with 1% safranin. Disease criteria are based on the council of scientific and industrial research (CSIR) assessment method. Data were analysis used analysis of variance (p<0.05) and the least significance difference (LSD). The results showed that Dering and Slamet cultivars had the largest cuticle, epidermis, and palisade ratios and the smallest stomata length and width with the largest number of stomata and trichomes compared to Grobogan and Wilis. The disease severity (DS) of the cultivars Dering 14.6%, Slamet 24.64%, Grobogan 24.80% (classified as a resistant with low infection), while Wilis cultivar was 31.08% as a moderately susceptible cultivar with moderate infection. The novelty of soybean cultivar selection against CLB is important and its effectiveness for increasing soybean productivity. Dering, Slamet and Grobogan are likely to be further developed with their resistance to CLB disease.

Keywords

Cercospora kikuchii, cultivar selection, fungal pathogen, Glycine max, plant disease

Full Text:

PDF

References

Albu, S., Schneider, R. W., Price, P. P., & Doyle, V. P. (2016). Cercospora cf. flagellaris and Cercospora cf. sigesbeckiae are associated with cercospora leaf blight and purple seed stain on soybean in North America. Phytopathology, 106(11), 1376–1385.

Aliyah, N. U., Sulistyowati, L., & Muhibbudin, A. (2015). Hubungan ketebalan lapisan epidermis daun terhadap serangan jamur (Mycosphaerella musicola) penyebab penyakit bercak daun sigatoka pada sepuluh kultivar pisang. Jurnal HPT, 3(1), 35–43.

Andrade, C. C. L., Lúcio, M., Resende, V. De, Moreira, S. I., & Sandra, M. (2021). Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica, 49(4), 727–737.

Aparecido, L. M. T., Teodoro, G. S., Mosquera, G., Brum, M., Barros, F. de V., Pompeu, P. V., Rodas, M., Lazo, P., Müller, C. S., Mulligan, M., Asbjornsen, H., Moore, G. W., & Oliveira, R. S. (2018). Ecohydrological drivers of neotropical vegetation in montane ecosystems. Ecohydrology, 11(3), 1–16. https://doi.org/10.1002/eco.1932

Azmat, M. A., Khan, A. A., & Niaz, S. (2016). Stomatal density and chlorophyll concentration as an indicator of powderymildewresistance in pea (Pisum sativum L.). Pak. J. Agri. Sci., 53(4), 871–877. https://doi.org/10.21162/PAKJAS/16.36 52

Braga, Z. V., Feliciano, R., Amorim, L., & Appezzato-da-glória, B. (2019). Histopathology of infection and colonisation of Elsinoë ampelina on grapevine leaves. Eur J Plant Pathol, 154(4), 1009–1019.

Butt, T. M., Coates, C. J., Dubovskiy, I. M., & Ratcliffe, N. A. (2016). Entomopathogenic fungi: new insights into host-pathogen interactions. In Advances in Genetics (Vol. 94).https://doi.org/10.1016/bs.adgen.2016.01.006

Cahyaningrum, H., Suryanti, & Widiastuti, A. (2020). Response and resistance mechanism of Shallot Var. Topo, a north molluca’ local variety against basal rot disease. Advances in Engineering Research, 194(FANRes 2019), 71–75.

Cai, G., & Schneider, R. W. (2005). Vegetative compatibility groups in Cercospora kikuchii, the causal agent of cercospora leaf blight and purple seed stain in soybean. Population Biology, 95(3), 257–261.

Chen, T., White, J. F., & Li, C. (2021). Fungal endophyte Epichloë bromicola infection regulates anatomical changes to account for salt stress tolerance in wild barley (Hordeum brevisubulatum). Plant and Soil, 461(1–2), 533–546.https://doi.org/10.1007/s11104021-04828-w

de Mello, F. E., Lopes-Caitar, V. S., Prudente, H., Xavier-Valencio, S. A., Franzenburg, S., Mehl, A., Marcelino-Guimaraes, F. C., Verreet, J. A., Balbi-Peña, M. I., & Godoy, C. V. (2021). Sensitivity of Cercospora spp. from soybean to quinone outside inhibitors and methyl benzimidazole carbamate fungicides in Brazil. Tropical Plant Pathology, 46(1), 69–80. https://doi.org/10.1 007/s40858-020-00410-4

Dutton, C., Hõrak, H., Hepworth, C., Mitchell, A., Ton, J., Hunt, L., & Gray, J. E. (2014). Bacterial infection systemically suppresses stomatal density. Molecular Ecology, 23(23), 5771–5790. https://doi.org/10.1111/pce.1357 0

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improveme nt in plants. Cell. Mol. Life Sci., 72, 673–689. https://doi.org/10.1007/s00018-014-1767-0

Fanourakis, D., Nikoloudakis, N., Pappi, P., Markakis, E., Doupis, G., Charova, S. N., Delis, C., & Tsaniklidis, G. (2020). The role of proteases in determining stomatal development and tuning pore apertur : a review. Plants, 9(3), 1–11.

Galdon-Armero, J., Fullana-Percias, M., Mulet, P. A., Conesa, M. A., Martin, C., & Galmes, J. (2018). The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). The Plant Journal, 96(3), 607–619. https://doi.org/10. 1111/tpj.14055

Gu, X., Ding, J., Liu, W., Yang, X., Yao, L., Gao, X., Zhang, M., Yang, S., & Wen, J. (2020). Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genomics, 21(1), 1–17. https://doi.org/10. 1186/s12864-020-6581-5

Hemati, P., Zafari, D., Mahmoodi, S. B., Hashemi, M., Gholamhoseini, M., Dolatabadian, A., & Ataei, R. (2018). Histopathology of charcoal rot disease (Macrophomina phaseolina) in resistant and susceptible cultivars of soybean. Rhizosphere, 7, 27–34. https://doi.org/10. 1016/j.rhisph.2018.06.0 09

Hermanto, Azahari, D. H., Rachmat, M., Ilham, N., Kariyasa, I. K., Supriyati, Setiyanto, A., Yofa, R. D., & Yusuf, E. S. (2019). Outlook komoditas pangan strategis tahun 2015-2019. Badan Penelitian dan Pengembangan Pertanian.

Husen, F., Hernayanti, H., Ekowati, N., Sukmawati, D., & Ratnaningtyas, N. I. (2021). Antidiabetic Effects and Antioxidant Properties of the Saggy Ink Cap Medicinal Mushroom, Coprinus comatus (Agaricomyce tes) on Streptozotocin-Induced Hyperglycem ic Rats. International Journal of Medicinal Mushrooms, 23(10), 9–21. https://doi.org/10 .1615/intjmedmushrooms.2021040020

Inayati, A., & Yusnawan, E. (2017). Identifikasi penyakit utama kedelai dan cara pengenda liannya. Balai Penelitian Tanaman Aneka Kacang Dan Umbi, 95–112.

Irulappan, V., & Senthil-Kumar, M. (2018). Morpho-physiological traits and molecular intricacies associated with tolerance to combined drought and pathogen stress in plants. Biotechnologies of Crop Improve ment, 3, 59–74. https://doi.org/10. 1007/978-3-319-94746-4

Isnawan, B. H., & Mubarok, K. (2014). Efektivitas penginduksi resistensi dan biopestisida terhadap penyakit bercak daun cercospora dan antraknosa pada cabai (Capsicum annuum L.). Planta Tropika: Journal of Agro Science, 2(2), 106–114. https://doi.org/10.18 196/pt.2016.024.46-57

Jamir, I., Kumar, A., Ayam, M., Devi, P., & Bhattacharjee, T. (2020). Screening of genotypes against viral diseases and assessment of yield loss due to yellow vein mosaic virus in okra grown in the eastern part of India. Indian Phytopathology, 39(3), 298–305. https://doi.org/10.1007/s42360-019-001 83-0

Júnior, A. F. N., Ribeiro, R. V, Appezzato-da-glória, B., Soares, M. K. M., Rasera, J. B., & Amorim, L. (2017). Phakopsora euvitis causes unusual damage to leaves and modifies carbohydrate metabolism in grapevine. Frontiers in Plant Science, 8, 1–12. https://doi.org/10.3389/fpls.20 17.01675

Kashiwa, T., Angel, M., Antonio, L., Paleo, D., Juan, A., Ivancovich, G., & Yamanaka, N. (2021). Technical advance the use of detached leaf inoculation for selecting Cercospora kikuchii resistance in soybean genotypes. PhytoFrontiers, 1(4), 250–257.

Kashiwa, T., & Suzuki, T. (2021). High-quality genome assembly of the soybean fungal pathogen Cercospora kikuchii. G3 [Genes, Genomes, Genetics], 11(10), 1–7. https://doi. org/10.1093/ g3journal/jkab277

Leucker, M., Wahabzada, M., Kersting, K., Peter, M., Beyer, W., Steiner, U., Mahlein, A., & Oerke, E. (2017). Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance. Functional Plant Biology, 44, 1–9.

Li, S., Sciumbato, G., Boykin, D., Shannon, G., & Chen, P. (2019). Evaluation of soybean genotypes for reaction to natural field infection by Cercospora species causing purple seed stain. PLoS ONE, 14(10), 1–15. https://doi.org/10.1371/journal.pone.0222673

Ngegba, P. M., Enikuomehin, O. A., Afolabi, C. G., Akintokun, A. K., Egbontan, A. O., & Kanneh, S. K. (2017). Efficacy of plants exracts on cercospora leaf spot incidence and severity of groundnut (Arachis hypogaea L.) in-vivo. International Journal of Current Research, 9(12), 63007–63013.

Nuryati, L., Waryanto, B., & Widaningsih, R. (2015). Outlook komoditas pertanian tanaman pangan kedelai 2015 (Outlook of soybean commodity 2015). In L. Nuryati, B. Waryanto, & R. Widaningsih (Eds.), Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian (Center for Agricultural Data and Information Systems). Pusat Data dan Sistem Informasi Pertanian - Kementerian Pertanian.

Ortiz-urquiza, A., & Keyhani, N. O. (2013). Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects, 4, 357–374. https://doi.org/10.3390/insects4030 357

Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8 (April), 1–15. https://doi.org/10.3389 /fpls.2017.00537

Poletto, T., Muniz, M. F. B., Fantinel, V. S., Da Silva Martello, L., Graciolli Savian, L., Harakava, R., Guatimosim, E., Poletto, I., & Stefenon, V. M. (2021). Characterization of the brown leaf spots pathosystem in Brazilian pecan orchards: Pathogen morphology and molecular identification. Annals of Forest Research, 64(1), 75–86. https://doi.org/10.15 287/afr.2021.1957

Putra, G. M., Hadiastono, T., Afandhi, A., & Prayogo, Y. (2013). Patogenisitas jamur entomopatogen Lecanicillium lecanii (deuteromycotina; hyphomycetes) terhadap Bemisia tabaci (g.) sebagai vektor virus cowpea mild mottle virus (cmmv) pada tanaman kedelai. Jurnal HPT, 1(1), 27–39.

Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/jipb.12654

Reusche, M., Thole, K., Janz, D., Truskina, J., Rindfleisc, S., Drübert, C., Polle, A., Lipka, V., & Teichmann, T. (2012). Verticillium

infection triggers vascular-related nac domain7 – dependent de novo xylem formation and enhances drought tolerance in arabidopsis. The Plant Cell, 24(9), 3823–3837. https://doi.org/10.1105/tpc.112.103374

Samiyarsih, S., Pratiwi, A. Y. P., Muljowati, J. S., & Fitrianto, N. (2020). Selection of soybean (Glycine max) Germplasm against bio-trophic fungi disease based on anatomical resistance. Biosaintifika Journal of Biology & Biology Education, 12(3), 311–318.

Sawinski, K., Mersmann, S., Robatzek, S., & Böhmer, M. (2013). Guarding the green: pathways to stomatal immunity. Molecular Plant-Microbe Interactions, 26(6), 626–632.

Wongnaa, C. A., Bakang, J.-E. A., Asiamah, M., Appiah, P., & Asibey, J. K. (2021). Adoption and compliance with Council for Scientific and Industrial Research recommended maize production practices in Ashanti region, Ghana. World Journal of Science, Technology and Sustainable Development, 18(4), 438–456. https://doi.org/10.1108/wjstsd-03-2021-0035

Yeung, E. C. T., Stasolla, C., Sumner, M. J., & Huang, B. Q. (2015). Plant Microtechniques and Protocols (E. C. T. Yeung, C. Stasolla, M. J. Sumner, & B. Q. Huang (eds.)). Springer International Publishing.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.