Bioremediation of Cadmium (Cd) in Batik Wastewater Using Different Carrier Media Containing Rhizobacteria

Sri Lestari(1), Oedjijono Oedjijono(2), Slamet Santoso(3), Dyah Fitri Kusharyati(4), Ramadi Habib Fathurrohim(5),


(1) Ecotoxicology Laboratory, Biology Faculty, Jenderal Soedirman University, Soeparno Street No. 63 Purwokerto, Central Java Indonesia 53123
(2) Ecotoxicology Laboratory, Biology Faculty, Jenderal Soedirman University, Soeparno Street No. 63 Purwokerto, Central Java Indonesia 53123
(3) Ecotoxicology Laboratory, Biology Faculty, Jenderal Soedirman University, Soeparno Street No. 63 Purwokerto, Central Java Indonesia 53123
(4) Ecotoxicology Laboratory, Biology Faculty, Jenderal Soedirman University, Soeparno Street No. 63 Purwokerto, Central Java Indonesia 53123
(5) Ecotoxicology Laboratory, Biology Faculty, Jenderal Soedirman University, Soeparno Street No. 63 Purwokerto, Central Java Indonesia 53123

Abstract

Batik wastewater is very dangerous for the environment and health because it contains heavy metals, such as Cadmium (Cd), derived from naphthol and indigo sol dyes. Rhizobacteria have great potential to detoxify Cd on a laboratory scale. Therefore, they should be packaged in carrier media to ensure their long-term viability in the field. The carrier media used were peat, sawdust, and tofu solid waste. This research aimed to determine the most potential of three rhizobacteria as tolerant to Cd from 11 isolates, the best carrier media that can maintain rhizobacteria viability after freeze-dried, and the effectiveness of carrier media containing potential rhizobacteria in reducing Cd in batik wastewater. Furthermore, an experimental method with completely randomized and split-plot designs was used. Rb1, Rb3, and Rb6 were the most Cd-tolerant of the three rhizobacteria isolates tested. For the viability of each isolate, tofu solid waste and peat were the best carrier media at Rb, while sawdust and tofu solid waste were the best at Rb3 and peat at Rb6. Isolate Rb3C3 had the highest percentage value of degrading Cd at 85.1%, while others had less than 80%. Isolate rhizobacteria with a carrier media makes it easy to apply on a field scale because it already contains a source of nutrients for bacterial growth and the packaging has a longer shelf life.

Keywords

Bioremediation; Cadmium; Carrier Media; Rhizobacteria

Full Text:

PDF

References

Faisal, M., Gani, A., Maulana, F. & Daimon, H., 2016. Treatment and Utilization of Industrial Tofu Waste in Indonesia. Asian Journal of Chemistry, 28(3), pp. 501-507.

Hardiani, H., Kardiansyah, T. & Sugesty, S. 2011. Bioremediasi Logam Timbal (Pb) dalam Tanah Terkontaminasi Limbah Sludge Industri Kertas Proses Deinkin. Jurnal Selulosa, 1(1), pp. 31-41.

Kour, D., Kaur, T., Devi, R., Yadav, A., Singh, M., Joshi, D., Singh, J., Suyal, D. C., Kumar, A., Rajput, V. D., Yadav, A. N., Singh, K., Gingh, J., Sayyed, R. Z., Arora, N. K., Saxena, A. K. 2021. Beneficial Microbiomes for Bioremediation of Diverse Contaminated Environments for Environmental Sustainability: Present Status and Future Challenges. Environmental Science and Pollution Research, Review Article. https://doi.org/10/1007/s11356-021-13252-7

Lata, S., Kaur, H. P. & Mishra, T., 2019. Cadmium Bioremediation: A Review. International Journal of Pharmaceutical Sciences and Research, 10(9), pp. 4120-4128.

Lennox, J. A., Asitok, John, G. E. & Etim, B. T., 2019. Characterization of Products from Sawdust Biodegradation using Selected Microbial Culture Isolated from It. African Journal of Biotechnology, 18(29), pp. 857-864.

Lestari, S., Dewi, R. S. & Wibowo, E. S., 2019. Biosorption Chrome (Cr) and Dyes using Biosorbent in The Modified Tea Bag. Journal of Microbial Systematics and Biotechnology, 1(1), pp. 38-43.

Lestari, S., Sudarmadji, Tandjung , S. D. & Santoso, S. J., 2017. Effect of Batik Waste Water on Kali Wangan Water Quality in Different Seasons. ICENIS, 31(1), pp. 1-4.

Lestari, S., Sudarmardji, Tandjung, S. D. & Santosa, S. J., 2016. Biosorpsi Krom Total dalam Limbah Cair Batik dengan Biosorben yang Dikemas dalam Kantung Teh Celup. Biosfera, 33(2), pp. 71-75.

Malusa, E., Paszt, L. & Ciesielska, J., 2012. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. The Scientific World Journal, 1(1), pp. 1-12.

Maulana, A., Supartono & Mursiti, S., 2017. Bioremediasi Logam Pb pada Limbah Tekstil dengan Staphylococcus aureus dan Bacillus subtilis. Indonesian Journal of Chemical Science, 6(3), pp. 256-261.

Merck, 2010. Microbiology Manual. 12th Edition. Darmstadt: Merck KGaA.

Sales da Silva, I. G., Gomes de Almeida, F. C., Rocha e Silva, N. M. P., Casazza, A. A., Converti, A., Sorubbo, L. A. 2020. Soil Bioremediation: Overview of Technologies and Trends. Energies. 30, 4664 pp: 1-25

Setiawan, K. 2019. Metode Penelitian. Lampung: LPPM Universitas Lampung.

Setiawati, M. R., Suryatmana, P., Herdiyantoro, D. & Ilmiyati, Z., 2014. Karakteristik Pertumbuhan dan Waktu Generasi Isolat Azotobacter sp. dan Bakteri Endofitik asal Ekosistem Lahan Sawah. Jurnal Agroekoteknologi, 6(1), pp. 12-20.

Sharah, A., Karnila, R. & Desmelati, 2015. Pembuatan Kurva Pertumbuhan Bakteri Asam Laktat yang di Isolasi dari Ikan Peda Kembung (Rastrelliger sp.). Jurnal Online Mahasiswa Bidang Perikanan dan Ilmu Kelautan, 2(2), pp. 1-8.

Sharma, R. K. & Archana, G., 2016. Cadmium Minimization in Food Crops by Cadmium Resistant Plant Growth Promoting Rhizobacteria. Applied Soil Ecology, 107(1), pp. 66-78.

Shvartseva, O., Skripkina, T., Gaskova, O. & Podgorbunskikh, E., 2022. Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water, 14, 2114, pp: 1-19

Syahputra, R. & Soesanti, I., 2016. Application of Green Energy for Batik Production Process. Journal of Theoretical and Applied Information Technology, 91(2), pp. 249-256.

Tamara, H. 2013. Structural and Functional Investigations of Plant Metallothioneins. Dissertation. Switzerland: Zurich Open Repository and Archive.

Widari, N. S., 2018. Pembuatan Serbuk Kering Phanerochaete chrysosporium untuk Pengolahan Limbah Tekstil. MATRIK (Jurnal Manajemen dan Teknik), 13(1), pp. 50-58.

Wijayanti, T. & Lestari, D. E. G., 2017. Bioremediasi Limbah Tercemar Kadimum (Cd) pada Perairan di Kabupaten Pasuruan Menggunakan Bakteri Indigen Secara Ex-Situ. Jurnal Pena Sains, 4(2), pp. 114-123.

Winardi, Sudrajat, Haryono, E. & Soetarto, E. S. 2019. Potential of Soil Bacteria as Mercury Bioremediation Agent in Traditional Gold Mining. Biosaintifika, 11(1) pp. 108-116.

Winardi, Haryono, E., Sudrajat & Soetarto, E. S. 2020. In Situ Bioremediation Strategies for the Recovery of Mercury Contaminated Land in Abandoned Traditional Gold Mines in Indonesia. Biosaintifika, 13(3), pp: 469-477.

Wongchawalit, J., Noitanom, T. & Panich-pat, T., 2020. Potential of Rhizobacteria for Bioremediation of Lead Accumulation in Rice Plants. Polish Journal of Environmental Studies, 29(5), pp. 3873-3880.

Yanti, Y., Habazar, T. & Resti, Z., 2017. Formulasi Padat Rhizobakteria Indigenus Bacillus thuringiensis TS2 dan Waktu Penyimpanan untuk Mengendalikan Penyakit Pustul Bakteri Xanthomonas axonopodis PV. Glycines. Jurnal Hama dan Penyakit Tumbuhan Tropika, 17(1), pp. 9-18.

Yanti, Y., Habazar, T., Resti, Z. & Suhalita, D., 2013. Penapisan Isolat Rizobakteri dari Perakaran Tanaman Kedelai Yang Sehat Untuk Pengendalian Penyakit Pustul Bakteri (Xanthomonas axonopodis Pv. Glycines). Jurnal Hama dan Penyakit Tumbuhan Tropika, 13(1), pp. 24-34.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.