Antioxidant Activity of Microalgae Extract Cosmarium sp. Using 2.2-Azinobis-(3-Ethylbenzothiazoline)-6-Sulfonic Acid (ABTS) Radical Cation Assay

Ni Wayan Sri Agustini(1), Noor Hidhayati(2), Bella Sakti Oktora(3),


(1) Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, Indonesia
(2) Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, Indonesia
(3) Department of Pharmacy, STTIF, Bogor, Indonesia

Abstract

The demand for natural antioxidants has increased due to the harmful effects of synthetic antioxidants, such as toxicity and carcinogenic properties. Microalgae face this requirement as they can produce numerous substances that have the potential to be antioxidants. This study aimed to evaluate the antioxidant activity of Cosmarium extracts using ABTS radical cation assay and identify compounds probably responsible for it. Dried biomass was extracted using hexane, ethyl acetate, and ethanol solvents using the maceration method. Extracts were partially purified with TLC and column chromatography. Compound identification was conducted using GC-MS analysis. The result showed that ethanol extract has the best activity with the IC50 at 55.95 ppm, followed by hexane and ethyl acetate extracts with IC50 as much as 104.339 ppm and 180.07 ppm, respectively. Two active fractions were selected fraction after partial purification with chromatographic analysis. Fraction 1 gave IC50 at 99.6 ppm while fraction 2 gave better IC50 at 53.562 ppm, both categorized as strong antioxidants. Compounds identification by GC-MS revealed that both fractions contain fatty acids compounds with 9.12-octadecadienoic acid (linoleic acid) and hexadecanoic acid (palmitic acid) as the dominant compound in fractions 1 and 2, respectively. This study gave insight into the potential of ethanol fraction from Cosmarium sp. as a natural antioxidant. 

Keywords

ABTS, antioxidant, bioactive compounds, Cosmarium sp.,GC-MS analysis

Full Text:

PDF

References

Abdo, S. M., Hetta, M. H., Samhan, F. A., Din, R. A. S. El, & Ali, G. H. (2012). Phytochemical and antibacterial study of five freshwater algal species. Asian Journal of Plant Sciences, 11(3), 109–116. https://doi.org/10.3923/ajps.2012.109.116

Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19

Akar, B., Akar, Z., & Sahin, B. (2019). Identification of antioxidant activity by different methods of a freshwater alga (Microspora sp.) collected from a high mountain lake. Hittite Journal of Science and Engineering, 6(1), 25–29. https://doi.org/10.17350/HJSE190300001

Anwer, S. S., Sdiq, K. H., Muhammad, K. R., & Aladdin, L. M. (2022). Phenolic compound and fatty acid properties of some microalgae species isolated from Erbil City. Brazilian Journal of Biology, 82, 1–8. https://doi.org/doi.org/10.1590/1519-6984.256927

Archer, L., Mcgee, D., Parkes, R., Paskuliakova, A., Mccoy, G. R., Adamo, G., … Touzet, N. (2021). Antioxidant bioprospecting in microalgae : characterisation of the potential of two marine heterokonts from Irish waters. Applied Biochemistry and Biotechnology, 193, 981–997. https://doi.org/10.1007/s12010-020-03467-8

Ardiles, P., Cerezal-mezquita, P., Salinas-fuentes, F., Daniel, O., Renato, G., & Ruiz-Dominguez, M. C. (2020). Biochemical composition and phycoerythrin study using green extraction technologies. Processes, 8, 1628. https://doi.org/10.3390/pr8121628

Assuncao, M. F. G., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreicao, S., Santos, S. D., … Santos, L. M. A. (2017). Screening microalgae as potential sources of antioxidants. Journal of Applied Phycology, 29, 865–877. https://doi.org/10.1007/s10811-016-0980-7

Banskota, A. H., Sperker, S., Stefanova, R., McGinn, P. J., & O’Leary, S. J. B. (2019). Antioxidant properties and lipid composition of selected microalgae. Journal of Applied Phycology, 31, 309–318. https://doi.org/10.1007/s10811-018-1523-1

Challouf, R., Dhieb, R. Ben, Omrane, H., Ghozzi, K., & Ouada, H. Ben. (2012). Antibacterial , antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. African Journal of Biotechnology, 11(82), 14844–14849. https://doi.org/10.5897/AJB12.1118

Chung, H. S., & Woo, W. S. (2001). A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. Journal of Natural Products, 64, 1579–1580. https://doi.org/10.1021/np010324g

Conde, T. A., Neves, B. F., Couto, D., Melo, T., Neves, B., Costa, M., … Domingues, M. R. (2021). Microalgae as sustainable bio-factories of healthy lipids : evaluating fatty acid content and antioxidant activity. Marine Drugs, 19(7), 357. https://doi.org/10.3390/md19070357

Coskun, O. (2016). Separation techniques: Chromatography. Biochemistry, 3(2), 156–160. https://doi.org/10.14744/nci.2016.32757

Coulombier, N., Jauffrais, T., & Lebouvier, N. (2021). Antioxidant compounds from microalgae : a review. Marine Drugs, 19, 549. https://doi.org/10.3390/md19100549

Daneshvar, N., Ayazloo, M., Khataee, A. R., & Pourhassan, M. (2007). Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp . Bioresource, 98, 1176–1182. https://doi.org/10.1016/j.biortech.2006.05.025

Gibbons, S. (2006). An Introduction to Planar Chromatography. In S. D. Sarker, Z. Latif, & A. I. Gray (Eds.), Methods in Biotechnology Vol 20, Natural Products Isolation, Second Edition (p. 77). Totowa, New Jersey: Humana Press Inc.

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., Brabanter, J. De, & Cooman, L. De. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol, 24, 1477–1486. https://doi.org/10.1007/s10811-012-9804-6

Hasibuan, F., Syahfitri, W., Ilyas, S., & Hutahaean, S. (2020). Phytochemical screening , antioxidant activity and thin-layer chromatography test of methanol extract and simplicia leaves of loquat ( Eriobotrya japonica Lindl ). IOP Conf. Series: Materials Science and Engineering, 725, 012069. https://doi.org/10.1088/1757-899X/725/1/012069

Khorshed, B. H., & Al-Katib, M. A. (2021). Screening of some algal oils to select the best algal biodiesel resource. Egyptian Journal of Aquatic Biology & Fisheries, 25(3), 571–588.

Li, H., Cheng, K., Wong, C.-C., Fan, Ki.-W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771–776. https://doi.org/10.1016/j.foodchem.2006.06.022

Li, X., Hu, Q., Jiang, S., Li, F., Lin, J., Han, L., Chen, D. (2015). Flos Chrysanthemi Indici protects against hydroxyl-induced damages to

DNA and MSCs via antioxidant mechanism. Journal of Saudi Chemical Society, 19(4), 454–460. https://doi.org/10.1016/j.jscs.2014.06.004

Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity : a review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/doi.org/10.3390/ijms22073380

Price, K., & Farag, I. H. (2013). Resources conservation in microalgae biodiesel production. International Journal of Engineering and Technical Research (IIJETR), 1(8).

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening : An overview. International Journal of Chemical Studies, 8(2), 603–608. https://doi.org/https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Shivaprasad, H. N., Mohan, S., Kharya, M. D., Shiradkar, M. R., & Lakshman, K. (2005). In-vitro models for antioxidant activity evaluation: a review. Retrieved from www.pharmainfo.net

Suryanti, V., Sariwati, A., Sari, F., Handayani, D. S., & Risqi, H. D. (2022). Metabolite bioactive contents of Parkia timoriana (DC) Merr seed extracts in different solvent polarities. Hayati Journal of Biosciences, 29(5), 681–694. https://doi.org/10.4308/hjb.29.5.681-694

Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products : a comprehensive review. Chinese Medicine, 13(20), 1–26. https://doi.org/10.1186/s13020-018-0177-x

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.