CO2 Sequestration Using Sodium Hydroxide and Its Utilization for Chlorella sorokiniana Biomass Production

Ragil Pandu Sadewo(1), Noor Hidhayati(2), Laksmi Ambarsari(3), Khairul Anam(4),


(1) Department of Biochemistry, Faculty of Sciences and Mathematics, IPB University, Bogor, Indonesia
(2) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
(3) Department of Biochemistry, Faculty of Sciences and Mathematics, IPB University, Bogor, Indonesia
(4) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia

Abstract

Chlorella is widely used for its fast growth rate and easy cultivation with 14–30% lipid content and 36–59% dry weight. Thus, sodium hydroxide is used to increase carbon consumption, biomass, and metabolites productions in microalgae. This study was conducted to observe the effect of sodium hydroxide addition on biomass and metabolites  production in photoautotrophic cultivated Chlorella sorokiniana. Microalgae C.sorokiniana (LIPI12-Al016) was obtained from the culture collection of Microalgae and Bioprocess Engineering Research Group laboratory, National Research and Innovation Agency. Then, the microalgae were cultivated in media with various concentrations of sodium hydroxide. Biomass production was measured by gravimetry, and carbon consumption was measured by acid-alkalimetry. Sodium hydroxide 60 mM gave the best growth, maximizing average carbon consumption to 691.8 mg.L-1 and biomass production to 598.3 mg.L-1. The utilization of NaOH in the medium did not increase the metabolites content, except for protein. Carbohydrate was the dominant metabolite among the others. Fatty acids profile mainly composed of C16 and C18 fatty acids, which are favorable for biodiesel production. These results gave an overview of the potency of microalgae C. sorokiniana as a CO2 mitigation agent and alternative sources of energy and nutrition.

Keywords

biomass; CO2 consumption; C. sorokiniana; metabolites; sodium hydroxide

Full Text:

PDF

References

Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., … Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647–652. https://doi.org/10.1038/nbt.3865

Amin, M., Chetpattananondh, P., Khan, M., Mushtaq, F., & Sami, S. (2018). Extraction and Quantification of Chlorophyll from Microalgae Chlorella sp. IOP Conf. Series: Materials Science and Engineering, 414, 012025. https://doi.org/10.1088/1757-899X/414/1/012025

Cheng, J., Zhu, Y., Zhang, Z., & Yang, W. (2019). Modification and improvement of microalgae strains for strengthening CO2 fixation from coal- fired flue gas in power plants. Bioresource Technology, 291, 121850. https://doi.org/10.1016/j.biortech.2019.121850

Kassim, M. A., & Meng, T. K. (2017). Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the Total Environment Journal. https://doi.org/10.1016/j.scitotenv.2017.01.172

Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool : A review. Algal Research, 46, 101800. https://doi.org/10.1016/j.algal.2020.101800

Kim, E. J., Kim, S., Choi, H.-G., & Han, S. J. (2020). Co production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice. Biotechnology for Fuels, 13(20). https://doi.org/doi.org/10.1186/s13068-020-1660-z

Kong, F., Ren, H., Zhao, L., Nan, J., Ren, N., Liu, B., & Ma, J. (2020). Semi-continuous lipid production and sedimentation of Scenedesmus sp. by metal ions addition in the anaerobic fermentation effluent. Energy Conversion and Management, 203, 112216. https://doi.org/10.1016/j.enconman.2019.112216

Kwak, H. S., Kim, J. Y. H., Woo, H. M., Jin, E. S., Min, B. K., & Sim, S. J. (2016). Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal, 19, 215–224. https://doi.org/10.1016/j.algal.2016.09.003

Lakshmikandan, M., Murugesan, A., Wang, S., Abomohra, A. E.-F., Jovita, P. A., & Kiruthiga, S. (2019). Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119398

Li-beisson, Y., Thelen, J. J., Fedosejevs, E., & Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003

Ma, M., Yuan, D., Yue, H., Park, M., Gong, Y., & Hu, Q. (2017). Effective control of Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana GT-1 by maintaining CO2 -mediated low culture pH. Algal Research. https://doi.org/10.1016/j.algal.2017.06.023

Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, H. (2018). The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7, 42. https://doi.org/10.3389/fbioe.2019.00042

Montone, C. M., Capriotti, A. L., Cavaliere, C., Barbera, G. La, Piovesana, S., Chiozzi, R. Z., & Lagana, A. (2018). Peptidomic strategy for purification and identification of potential ACE- inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Analytical and Bioanalytical Chemistry, 410, 3573–3586. https://doi.org/10.1007/s00216-018-0925-x

Mujtaba, G., Choi, W., Lee, C., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283. https://doi.org/10.1016/j.biortech.2012.07.057

Nayak, M., Rath, S. S., Manikkannan, T., Panda, P., Mishra, B. K., & Mohanty, R. C. (2013). Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide. J. Microbiol. Biotechnol., 23(9), 1260–1268. https://doi.org/10.4014/jmb.1302.02044

Neto, W. A. F., Mendes, C. R. B., & Abreu, P. C. (2018). Carotenoid production by the marine microalgae Nannochloropsis oculata in different low-cost culture media. Aquaculture Research, 1–9. https://doi.org/10.1111/are.13715

Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(4), 1–8. https://doi.org/10.1186/s13068-019-1646-x

Praharyawan, S., Rahman, D. Y., & Susilaningsih, D. (2016). Characterization of lipid productivity and fatty acid profile of three fast-growing microalgae isolated from Bengkulu for possible use in health application. The Journal of Tropical Life Science, 6(2), 79–85. https://doi.org/10.11594/jtls.06.02.03

Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth , lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192–199. https://doi.org/10.1016/j.algal.2017.11.004

Quilodran, B., Cortinez, G., Bravo, A., & Silva, D. (2020). Characterization and comparison of lipid and PUFA production by native thraustochytrid strains using complex carbon sources. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e05404

Ru, I. T. K., Sung, Y. Y., Jusoh, M., Abdul, M. E., & Nagappan, T. (2020). Chlorella vulgaris : a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology. https://doi.org/10.1080/26388081.2020.1715256

Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553. https://doi.org/10.3390/en5051532

Sierra, L. S., Dixon, C. K., & Wilken, L. R. (2017). Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Research, 25, 149–159. https://doi.org/10.1016/j.algal.2017.04.004

Song, C., Liu, Q., Qi, Y., Chen, G., Song, Y., Kansha, Y., & Kitamura, Y. (2019). Absorption-microalgae hybrid CO2 capture and biotransformation strategy — A review. International Journal of Greenhouse Gas Control, 88, 109–117. https://doi.org/10.1016/j.ijggc.2019.06.002

Tu, R., Jin, W., Han, S., Zhou, X., Wang, J., Wang, Q., … Feng, X. (2019). Enhancement of microalgal lipid production in municipal wastewater : Fixation of CO2 from the power plant tail gas. Biomass and Bioenergy, 131, 105400. https://doi.org/10.1016/j.biombioe.2019.105400

Wang, C., & Lan, C. Q. (2018). Effects of shear stress on microalgae – A review. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2018.03.001

Yu, B. S., Sung, Y. J., Hong, M. E., & Sim, S. J. (2021). Improvement of photoautotrophic algal biomass production after interrupted CO2 supply by urea and KH2PO4 injection. Energies, 14, 778. https://doi.org/doi.org/10.3390/en14030778

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., & Liu, T. (2011). Effect of cultivation mode on microalgal growth and CO2 fixation. Chemical Engineering Research and Design, 89(9), 1758–1762. https://doi.org/10.1016/j.cherd.2011.02.018

Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International. https://doi.org/dx.doi.org/10.1155/2016/8792548

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.