The Effect of Probiotic Lactobacillus paracasei on The Performance of Guppy Fish (Poecilia reticulata var. Mosaic)

Siti Nur Jannah(1), Resanti Adityani(2), Tyas Rini Saraswati(3), Susiana Purwantisari(4),

(1) Department of Biology, Diponegoro University. Jl. Prof Soedarto, Tembalang, Semarang, 50275 Central Java, Indonesia.
(2) Undergraduate student of Department Biology, Faculty of Sciences and Mathematics, Universitas Diponegoro, Semarang, Indonesia
(3) Department of Biology, Diponegoro University. Jl. Prof Soedarto, Tembalang, Semarang, 50275 Central Java, Indonesia.
(4) Department of Biology, Diponegoro University. Jl. Prof Soedarto, Tembalang, Semarang, 50275 Central Java, Indonesia.


Guppy fish (Poecilia reticulata var. Mosaic) is a type of ornamental fish that has many enthusiasts. Guppy fish culture still has low growth and viability in guppy fish culture. The previous solution was to apply antibiotics, but as time goes by antibiotics cause bacterial resistance. Another solution is the application of probiotics to feed. L.paracasei is one of the lactic acid probiotic bacteria and has never been applied to guppies. This study aimed to analyze the effect of the probiotic on performance (growth and viability, gill and gut histology, and LAB (Lactic Acid Bacteria L.paracasei) total) in guppies. 180 fish were randomly assigned into four triplicates groups and there were four treatment groups: 0 (Control), 5, 10, and 15 mL. kg-1 feed. As the result of this research, the highest body weight and length growth performance is found in the P3 group. Meanwhile, there were no significant differences between the groups of guppies viability. Gill and intestinal histology showed that  control group was the best group. The conclusion of this study is that 15 mL. kg-1 is considered the most effective for improving the performance of guppy fish. The addition of L.paracasei can be used as feed supplements to improve performance of guppy fish.


Guppy; histology; Lactobacillus paracasei; performance; viability

Full Text:



Adeshina, I., Abubakar, M. I. O., & Ajala, B. E. (2020). Dietary supplementation with Lactobacillus acidophilus enhanced the growth, gut morphometry, antioxidant capacity, and the immune response in juveniles of the common carp, Cyprinus carpio. Fish Physiology and Biochemistry, 46(4), 1375–1385.

Ahmed, N. (2019). Global Aquaculture Productivity , Environmental Sustainability , and Climate Change Adaptability. Environmental Management, 159–172.

Alishahi, M., Tulaby Dezfuly, zahra, Mohammadian, T., & Mesbah, M. (2018). Effects of Two Probiotics, Lactobacillus Plantarum and Lactobacillus Bulgaricus on Growth Performance and Intestinal Lactic Acid Bacteria of Cyprinus Carpio. Iranian Journal of Veterinary Medicine, 12(3).

Andriani, Y., Kamil, T. I., & Iskandar, I. (2018). Efektivitas probiotik BIOM-S terhadap kualitas air media pemeliharaan ikan nila nirwana Oreochromis niloticus. Depik, 7(3), 209–2017.

Anjur, N. (2021). An update on the ornamental fish industry in Malaysia : Aeromonas hydrophila -associated disease and its treatment control. 14, 1143–1152.

Bechmann, K. R., Arnberg, M., Gomiero, A., Westerlund, S., Lyng, E., Berry, M., Agustsson, T., Jager, T., & Burridge, L. E. (2019). Ecotoxicology and Environmental Safety Gill damage and delayed mortality of Northern shrimp ( Pandalus borealis ) after short time exposure to anti-parasitic veterinary medicine containing hydrogen peroxide. Ecotoxicology and Environmental Safety, 180(February), 473–482.

Boeckel, T. P. Van, Brower, C., Gilbert, M., Grenfell, B. T., & Levin, S. A. (2015). Global trends in antimicrobial use in food animals. 16, 1–6.

Caipang, C. M. ., & Lazado, C. . (2015). Nutritional impacts on fish mucosa immunostimulants pre- and probiotics. Mucosal Health in Aquaculture. In Mucosal Health in Aquaculture (pp. 211–272).

Cha, J. H., Rahimnejad, S., Yang, S. Y., Kim, K. W., & Lee, K. J. (2013). Evaluations of Bacillus spp. As dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against streptococcus iniae and as water additives. Aquaculture, 402–403, 50–57.

Cline, D. (2019). Water Quality in Aquaculture. Freshwater-Aquaculture.

Dalynn, B. (2014). McFarland Standard – for in vitro use only, Catalogue No TM50-TM60.

Dawood, M. A. O., Magouz, F. I., Salem, M. F. I., Elbialy, Z. I., & Abdel-Daim, H. A. (2020). Synergetic Effects of Lactobacillus plantarum and β-Glucan on Digestive Enzyme Activity, Intestinal Morphology, Growth, Fatty Acid, and Glucose-Related Gene Expression of Genetically Improved Farmed Tilapia. Probiotics and Antimicrobial Proteins, 12(2), 389–399.

Esam, F., Khalafalla, M. M., Gewaily, M. S., Abdo, S., Hassan, A. M., & Dawood, M. A. O. (2022). Ecotoxicology and Environmental Safety Acute ammonia exposure combined with heat stress impaired the histological features of gills and liver tissues and the expression responses of immune and antioxidative related genes in Nile tilapia. Ecotoxicology and Environmental Safety, 231, 113187.

Guardiola, F. A., Bahi, A., Bakhrouf, A., & Esteban, M. A. (2017). Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics, on gilthead seabream (Sparus aurata L.) skin mucosal immunity. Fish and Shellfish Immunology, 65, 169–178.

Hamdani, Waspodo, S., & Damayanti, A. A. (2018). Penggunaan Probiotik pada Pakan Ikan Bawal Bintang (Trachinotus blochii). Jurnal Perikanan, 8(2), 16–19.

Handajani, H., Widanarni, Setiawati, M., Budiardi, T., & Sujono. (2018). Evaluation of digestibility and ammonia excretion of fish meal and fish silage fed to juvenile Indonesian shortfin eel (Anguilla bicolor). AACL Bioflux, 11(2), 495–504.

Hossain, M. K., Islam, S. M. M., Rafiquzzaman, S. M. Nuruzzaman, M., Hossain, M. T., & Shahjahan, M. (2022). Multi-species probiotics enhance growth of Nile tilapia (Oreochromis niloticus) through upgrading gut, liver and muscle health. Aquaculture Research, 53, 5710– 5719.

Iorizzo, M., Albanese, G., Letizia, F., Testa, B., Tremonte, P., Vergalito, F., Lombardi, S. J., Succi, M., Coppola, R., & Sorrentino, E. (2022). Probiotic Potentiality from Versatile Lactiplantibacillus plantarum Strains as Resource to Enhance Freshwater Fish Health.

Jannah, S.N., Dinoto, A., Wiryawan, K.G., & Rusmana, I. (2016). Molecular diversity pattern of intestinal lactic acid bacteria in Cemani chicken, Indonesian native chicken, as revealed by terminal restriction fragment length polymorphisms. Malaysian Journal of Microbiology, 12(1), 102-111.

Kamaliah, K. (2017). Kualitas Sumber Air Tangkiling yang Digunakan sebagai Air Baku Air Minum Isi Ulang dari Aspek Uji MPN Total Coliform. Media Ilmiah Teknik Lingkungan, 2(2), 5–12.

Kelly, C., & Salinas, I. (2017). Under pressure: Interactions between commensal microbiota and the teleost immune system. Frontiers in Immunology, 8(MAY), 1–9.

Khine, A. A. (2018). Probiotic effect of Bacillus species isolates on Poecilia reticulate Peters, 1859 (Guppy) and water quality. 1st Myanmar – Korea Conference, 1(1), 1–12.

KKP. (2019). UPI Menengah Besar. Kementerian Kelautan Dan Perikanan Republik Indonesia.

Liu, D. M., Wang, P., Zhang, X. Y., Xu, X. L., Wu, H., & Li, L. (2014). Characterization of nitrite degradation by Lactobacillus casei subsp. rhamnosus LCR 6013. PLoS ONE, 9(4).

Ljubobratovic, U., Kosanovic, D., Vukotic, G., Molnar, Z., Stanisavljevic, N., Ristovic, T., Peter, G., Lukic, J., & Jeney, G. (2017). Supplementation of lactobacilli improves growth, regulates microbiota composition and suppresses skeletal anomalies in juvenile pike-perch (Sander lucioperca) reared in recirculating aquaculture system (RAS): A pilot study. Research in Veterinary Science, 115(July), 451–462.

Lugert, V., Thaller, G., Tetens, J., Schulz, C., & Krieter, J. (2014). A review on fish growth calculation : multiple functions in fish production and their specific application. 1–13.

Mangang, Y. A., & Pandey, P. K. (2021). ll and kidney tissues of Osteobrama belangeri (Valenciennes, 1844) exposed to different sub-lethal unionized ammonia. Aquaculture, 542.

Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231–241.

Mishra, V., & Sharma, R. (2021). Impact of probiotic supplementation on water quality and behaviour parameters in Cyprinus carpio. March.

Muchlisin, Z. A., Afrido, F., Murda, T., Fadli, N., Muhammadar, A. A., Jalil, Z., & Yulvizar, C. (2016). The Effectiveness of Experimental Diet with Varying Levels of Papain on The Growth Performance, Survival Rate and Feed Utilization of Keureling Fish (Tor tambra). Biosaintifika: Journal of Biology & Biology Education, 8(2), 172.

Mzengereza, K., Ishikawa, M., Koshio, S., Yokoyama, S., Yukun, Z., Shadrack, R. S., Seo, S., Kotani, T., Dossou, S., Basuini, M. F. El, & Dawood, M. A. O. (2021). novo Camelina Meal in Diets of Red Seabream ( Pagrus major ).

Parvathy, A., Das, B., Jifiriya, M., Varghese, T., Pillai, D., & Rejish Kumar, V. (2022). Ammonia induced toxico-physiological responses in fish and management interventions. Rev Aquac, 1–28. 10.1111/raq.12730

Rachmawati, D., Samidjan, I., & Prayitno, S. B. (2016). Aplikasi Teknik Probiotik Terhadap Kualitas Air Media Budidaya Ikan Lele Sangkuriang (Clarias gariepinus) di Desa Tambaksari, Kecamatan Rowosari, Kabupaten Kendal. PENA Akuatika, 14(1).

Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Boeckel, T. P. Van. (2020). Global trends in antimicrobial use in aquaculture. Scientific Reports, 1–9.

Schmidt, V., Gomez-Chiarri, M., Roy, C., Smith, K., & Amaral-Zettler, L. (2017). crossm Probiotics Reduces Antibiotic-Associated Mortality in Fish. American Society for Microbiology, 2(6), 1–13.

Sewaka, M., Trullas, C., Chotiko, A., Rodkhum, C., Chansue, N., Boonanuntanasarn, S., & Pirarat, N. (2019). Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Ore. Fish and Shellfish Immunology, 86, 260–268.

Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., & Colzato, L. S. (2015). A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 48, 258–264.

Trisna, D. E., Sasanti, A. D., & Muslim. (2013). Populasi Bakteri, Kualitas Air Media Pemeliharaan dan Histologi Benih Ikan Gabus (Channa striata) yang Diberi Pakan Berprobiotik. Jurnal Akuakultur Rawa Indonesia, 1(1), 90–102.

Van Doan, H., Lumsangkul, C., Jaturasitha, S., Meidong, R., Hoseinifar, S. H., & Dawood, M. A. O. (2021). Modulation of growth, skin mucus and serum immunities, and disease resistance of Nile tilapia fed host-associated probiotic (L.paracasei l61-27b). Aquaculture Nutrition, July, 1–10.

Waite, R., Beveridge, M., & Brummett, R. (2014). Improving Productivity and Environmental Performance of Aquaculture. World Resources Institute.

Wuertz, S., Schroeder, A., & Wanka, K. M. (2021). Probiotics in Fish Nutrition — Long-Standing Household Remedy or Native Nutraceuticals ?

Zezen, A., Abidin, Z., Murdianingsih, Y., & Ruhiyat, I. (2022). IoT-Based Guppy Aquaculture Monitoring System Using C 4 . 5 Method on Thingspeak Platform. 6(2).

Zheng, C., Wu, J., Zi, J., Yang, S., & Hui, S. (2019). Exogenous enzymes as functional additives in finfish aquaculture. September, 1–12.

Zhou, B. L., & Boyd, C. E. (2015). Ammonia nitrogen management in aquaculture ponds. October, 1–6.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.