Analysis of Genetic Variations of Ceiba pentandra (L.) Gaertn. on Several Critical Lands in West Sumatra Using RAPD Molecular Markers

Fadilla Hefzi(1), Mansyurdin Mansyurdin(2), Tesri Maideliza(3),

(1) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas. Jl. Univ Andalas, Kampus Limau Manis, Padang 25163, West Sumatra
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas. Jl. Univ Andalas, Kampus Limau Manis, Padang 25163, West Sumatra
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas. Jl. Univ Andalas, Kampus Limau Manis, Padang 25163, West Sumatra


Ceiba pentandra (L.) Gaertn. is a plant whose fruit is used to produce fiber and seeds for biofuel, which has the potential to be developed in critical land because it is adaptive to grow in critical land that is less fertile and lacks water. In West Sumatra, several critical land locations are overgrown by C. pentandra plants. This study aims to determine the genetic variation of C. pentandra in five critical land populations in West Sumatra as the basis for selecting superior seeds for development in critical land. The research was conducted by the descriptive method using molecular data with the molecular marker RAPD (random amplified polymorphic DNA). The results showed that the primers OPA-01, OPA-02, and OPB-10 could detect polymorphisms. Pangkalan Koto Baru in the regency Lima Puluh Kota (H = 0.1212) was the population with the highest intrapopulation genetic variation value. Interpopulation genetic variation (DST = 0.0321) was lower than intrapopulation genetic variation (HS = 0.1021), with a low genetic differentiation value (GST = 0.2392) and a high gene flow value (Nm = 1.5894). The genetic variation of C. pentandra can be used to select the parent in plant breeding programs.


Ceiba pentandra; critical land; genetic variation; kapuk randu; RAPD

Full Text:



Abengmeneng, C. S., Ofori, D., Kumapley, P., Akromah, R., Jamnadass, R., Quain, M. (2016). Genetic relationship among 36 genotypes of Ceiba pentandra (L.) as revealed by RAPD and ISSR markers. American Journal of Agriculture and Forestry, 4(4), 86- 96.

Atlas Big. (2020). World's top cotton producing countries. Retrieved from

Badan Pusat Statistik (BPS). (2022). Luas dan penyebaran lahan kritis menurut provinsi (hektar), 2011-2018. Retrieved from lahan-kritis-menurut-provinsi-dan-tingkat -kekritisan-lahan.html.

Bhandari, H. R., Bhanu, A. N., Srivastava, K., Singh, M. N., Shreya, Hemantaranjan, A. (2017). Assessment of genetic diversity in ccrop plants-an overview. Adv Plants Agric Res, 7(3), 25.

Bingham, E. T., Groose, R.W., Woodfield, D. R., Kidwell, K. K. (1994). Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci., 34, 823-829.

Bousba, R., Gueraiche, S., Kanouni, M. R., Bounar, R., Djekoune, A., Khammar, H., Nadia, Y. (2020). Genotypic diversity assessment of some durum wheat (Triticum durum) genotypes using RAPD analysis. BIODIVERSITAS, 21(6), 2696-2701.

Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.

Fei, Y., Tang, W., Shen, J., Tianjing, Z., Rui, Q., Xiao, B., Zhou, C., Liu, Z., Anna, Y. T. (2014). Application of random amplified polymorphic DNA (RAPD) markers to identify Taxus chinensis var. mairei cultivars associated with parthenogenesis. African Journal of Biotechnology, 13, 2385-2393.

Fu, Q., Lu, G., Fu, Y., Wang, Y. (2020). Genetic differentiation between two varieties of Oreocharis benthamii (Gesneriaceae) in sympatric and allopatric regions. Ecology and Evolution, 10, 7792-7805.

Hapsoro, D., Warganegara, H. A., Utomo, S. D., Sriyani, N., Yusnita. (2015). Genetic diversity among sucargane (Saccharum officinarum (L.) genotypes as shown by randomly amplified polymorphic DNA (RAPD). AGRIVITA, 37(3), 247-257.

Ingvarson, P. K., Dahlberg, H. (2019). The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scand J for Res, 34, 370-379.

Kuswantoro, H., Artari, R., Iswanto, R., Imani, H. (2020). Family structure of F5 soybeans lines derived from soybean varieties with the main differences on seed size and maturity traits. BIODIVERSITAS, 21(6), 2576-2585.

Larekeng, S. H., Restu, M., Gusmiaty, Millang, S., Bachtiar, B. (2018). Moderate level of genetic diversity in Anthocephalus macrophullus Roxb, an endemic tree of Sulawesi and its implication in conservation. International Journal of Agriculture System, 6(1), 74-81.

Li, S., Gan, X., Han, H., Zhang, X., Tian, Z. (2018). Low within-population genetic diversity and high genetic differentiation among populations of the endangered plant Tetracentron sinense Oliver revealed by inter-simple sequence repeat analysis. Ann For Sci, 75, 74.

Lobo, J., Solis, S., Fuchs, E. J., Quesada, M. (2013). Individual and temporal variation in outcrossing rates and pollen flow patterns in Ceiba pentandra (Malvaceae: Bombacoidea). BIOTROPICA, 45(2), 185-194.

Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Visual Exp, 63, 1-15.

Louwaars, N. P. (2018). Plant breeding and diversity: a troubled relationship?. Euphytica, 2018, 214-218.

Loveless, M. D. & Hamrick, J. L. (1984). Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15, 65-95.

Muhajirah, E., Kamal, M. M., Butet, N. A., Wibowo, A. (2021). Keragaman genetik populasi giant snakehead (Channa micropeltes) menggunakan penanda random amplified polymorphic dna di perairan taman nasional sebangau, Kalimantan Tengah. Journal of Natural Resources and Enviromental Management, 11(1), 141-151.

Mursyidin, D. H., Ahyar, G. M. Z., Saputra, A. W., Hidayat, A. (2021). Genetic diversity and relationships of Phalaenopsis based on the rbcL and trnL-F markers: In silico approach. Biosaintifika, 12(2), 212-221.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70, 3321-3323.

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.

Nybom, H. & Bartish. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect PI Ecol Evol Syst, 3(2), 93-114.

Ong, H. C., Silitonga, A.S., Masjuki, H. H., Mahlia, T. M. I., Chong, W. T., Boosrosh, M. H. (2013). Production and comparative fuel properties of biodiesel from non-edible oils: Jatropa curcas, Sterculia foetida, and Ceiba pentandra. Energy Conversion and Management, 73, 245-255.

Ony, M. A., Nowicki, M., Boggess, S. L., Klingeman, W. E., Zobel, J. M., Trigiano, R. N., Hadziabdic, D. (2020). Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecology and Evolution, 10: 3655-3670.

Pakull, B., Eusemann, P., Wojacki, J., Ahnert, D., Liesebach, H. (2021). Genetic diversity of seeds from four German Douglas fir (Pseudotsuga menziesii) seed orchads. European Journal of Forest Research, 140, 1543-1557.

Pandey, P., Pandey, V. R., Kumar, A., Yadav, S., Tiwari, D., Kumar, R. (2015). Relationship between heterosis and genetic diversity in Indian pigeonpea (Cajanus cajan (L.) Millspaugh) accessions using multivariate cluster analysis and heterotic grouping. Australian Journal of Crop Science, 9(6), 494-503.

PDASHL. (2021). Statistik Kementrian Lingkungan Hidup dan Kehutanan 2019. Jakarta: Kementrian Lingkungan Hidup dan Kehutanan.

Plenk, K., Bardy, K., Hohn, M., Kropf, M. (2019). Long-term survival and successfull conservation? Low genetic diversity but no evidence for reduced reproductive success at the north-western most range edge of Poa badensis (Poaceae) in Central Europe. Biodiv Conserv, 28, 1245-1265.

Probojati, R. T., Wahyudi, D., Hapsari, L. (2019). Clustering analysis and genome inference of pisang raja local cultivars (Musa spp.) from java island by random amplified polymorphic DNA (RAPD) marker. Journal of Tropical Biodiversity and Biotechnology, 4(2), 42-53.

Samrook, J. & Russel, D. W. (2001). Molecular Cloning (A Laboratory Manual). New York: Cold Spring Harbor Laboratory Press.

Singaravelan, N. & Marimuthu, G. (2004). Nectar feeding and pollen carrying from Ceiba pentandra by pteropodid bats. Journal of Mammalogy, 85(1), 1-7.

Singaravelan, N., Marimuthu, G., Racet, P. A. (2008). Do fruit bats deserve to be listed as vermin in the indian wildlife (protection) & amended acts? a critical review. Oryx, 43(4), 608-613.

Syamsuardi, Jamsari, Pohan, D. 2017. Gene flow and genetic diversity in endangered plant population, Morus macroura Miq. in West Sumatera.

Uslan & Pharmawati, M. (2020). Genetic diversity of Sterculia quadrifida in Kupang, Indonesia based on RAPD (random amplified polymorphic DNA) markers. BIODIVERSITAS, 21(7), 3407-3414.

Wahyudi, D., Hapsari, L., Sundari. (2020). RAPD analysis for genetic variability detection of mutant soybean (Glycine max (L.) Merr). J Trop Biodiv Biotechnol, 5(1), 68-77.

Wang, S. J., Chen, X. L., Han, F. B., Li, R. S., Li, G., Zhao, Y., Xu, Y. H., Zhang, L. X. (2016). Genetic diversity and population structure of ginseng in China based on RAPD analysis. Open Life Sci, 11, 6531-6535.

Wright, S. 1978. Evolution and the Genetic of Population, Variability Within and Among Natural Populations. Chicago: University of Chicago Press. p. 213-220.

Yeh, F. C., Yang, R. C., Boyle, T. (1999). POPGENE version 1.32: Microsoft window-based freeware for population genetic analysis. Edmonton: University of Alberta.

Zulfahmi. (2013). DNA markers for plants genetic analysis. J Agro, 5, 41-52.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.