Influence of Polysaccharide Krestin from Coriolus versicolor Extract on Nitrite and Malondialdehyde Concencentrations of Mus musculus Serum Exposed by Mycobacterium tuberculosis

Sri Puji Astuti Wahyuningsih(1), Manikya Pramudya(2), Sugiharto Sugiharto(3),


(1) Departement of Biology, Faculty of Science and Technology, Universitas Airlangga. Jl. Mulyorejo Kampus C Surabaya, 60115, East Java, Indonesia. Tel./Fax: +62-31-5926804,
(2) Departement of Biology, Faculty of Science and Technology, Universitas Airlangga. Jl. Mulyorejo Kampus C Surabaya, 60115, East Java, Indonesia. Tel./Fax: +62-31-5926804,
(3) Departement of Biology, Faculty of Science and Technology, Universitas Airlangga. Jl. Mulyorejo Kampus C Surabaya, 60115, East Java, Indonesia. Tel./Fax: +62-31-5926804,

Abstract

Mycobacterium tuberculosis is a major infection agent of tuberculosis that is controlled by the response of cell-mediated immunity. It is macrophages and cytolytic T lymphocytes. Activated macrophages will produce free radicals. Excessive free radicals cause tissue damage. Polysaccharide krestin contains β-glucan. It is a scavenger of free radicals. This research aimed to identify the influence of polysaccharide krestin from C. versicolor on nitrite and malondialdehyde concentrations of mice serum exposed by M. tuberculosis. Nitrite concentration was determined by nitrite assay. Malondialdehyde concentration was determined by TBARS assay. The result showed that adding polysaccharide krestin before exposure (P1) and adding polysaccharide krestin before-after exposure (P3) had the best potential to decrease nitrite concentration. Nitrite concentrations of P1 and P3 were 1.364 ± 0.523 M and 1.456 ± 0.712 M respectively. Meanwhile, P1 group and adding polysaccharide krestin after exposure (P2) had the best potential to decrease malondialdehyde concentration. Malondialdehyde concentrations of P1 and P2 were 1125.86 ± 97.96 µM and 953.86 ± 328.16 µM respectively. Their nitrite and malondialdehyde concentrations decreased, compared to K and K- groups. The research conclusion was that adding polysaccharide krestin before exposure could decrease both nitrite and malondialdehyde concentrations.

How to Cite

Wahyuningsih, S., Pramudya, M., & Sugiharto, S. (2016). Influence of Polysaccharide Krestin from Coriolus versicolor Extract on Nitrite and Malondialdehyde Concencentrations of Mus musculus Serum Exposed by Mycobacterium tuberculosis. Biosaintifika: Journal of Biology & Biology Education, 8(1), 12-17.

Keywords

Malondialdehyde; nitrite; polysaccharide krestin; tuberculosis

Full Text:

PDF

References

Abbas, A. K., Litchmann, A. H. H. & Pillai, S. (2012). Celluler and Molecular Immunology, 7th Edition. Philadelphia: WB Saunders Company.

Brown, G. D., Taylor, P. R., Reid, D. M., Willment, J. A., Williams, D. L., Martinez-Pomares, L., Wong, S. Y., & Gordon, S. (2002). Dectin-1 is a Major β-Glucan Receptor on Macrophages. J Exp Med, 196(3), 407-412.

Caramori, G. & Papi, A. (2004). Oxidant and Asthma. Thorax, 59(2), 170-173.

Chan, G. C., Chan, W. K., & Sze, D. M. (2009). The Effect of β–Glucan on Human Immune and Cancer Cells. Bio Med Central, 2 (25), 1-11.

Chen, J. & Seviour, R. (2007). Medicinal Important of Fungal Beta-(1-3), (1-6)-Glucans. Mycol Res, 111(Pt 6), 635-652.

Cui, J. & Chisti, Y. (2003). Polysaccharopeptides of Coriolus vesicolor: Physiological Activity, Uses, and Production. Biotechnol Adv, 21(2), 109-122.

Dagli, M., Eryilmaz, A., Besler, T., Akmansu, H., Acar, A. & Hakan, K. (2011). Role of Free Radical and Antioxidant in Nasal Polyps. Laryngoscope, 114 (7), 1200-1204.

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). A Biomarkers of Oxidative Damage in Human Disease. Clin Chem, 52(4), 601-623.

Eide, D. J. (2001). Functional Genomics and Metal Metabolism. Genome Biol, 2(10), 1028.

Gharavi, N. & El-Kadi, E. O. (2003). Measurement of Nitric Oxide in Murine Hepatoma Hepalclc7 Cells by Reserved Phase Hple with Fluorescence Detection. J Pharmceut Sci, 6(2), 302-307.

Guzik, T. J., Korbut, R., & Guzik, T. A. (2003). Nitric Oxide and Superoxide in Inflammation and Immune Regulation. J Physiol Pharmacol, 54(4), 469-487.

Jose, A., Gonzalves, N., Benayas, C. G. & Arenas, J. (2003). Semiautomated Measurement of Nitrate in Biology Fluids. Europ J Clin Chem, 17, 7-9.

Nurdini, R. F. (2015). Pengaruh Polisakarida Krestin Coriolus versicolor Terhadap Konsentrasi IL-10 dan Histologis Paru Pada Mus musculus yang Terpapar Mycobacterium tuberculosis. Skripsi. Surabaya: Fakultas Sains dan Teknologi, Universitas Airlangga.

Ooi, V. E. C & Liu, F. (2000). Immunomodulation and Anti-Cancer Activity of Polysaccharide-Protein Complexes. Curr Med Chem, 7(7), 715-729.

Ozkan, O. V., Ozturk, O. H., & Aydin, M. 2010. Effects of β–glucan Pretreatment on Acetylsalicylic Acid-Induced Gastric Damage: An Experimental Study in Rats. Curr Ther Res Clin Exp, 71(6), 369-383.

Pang, Z. J., Chen, Y., Zhou, M., & Wan, J. (2000). Effect of Polysaccharide krestin on Glutathione Peroxidase Gene Expression in Mouse Peritoneal Macrophages. Br J Biomed Sci, 57(2), 130-136.

Pham-Huy, L. A., He, H. & Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci, 4(2), 89–96.

WHO [World Health Organization]. (2015). Global Tuberculosis Report. Switzerland Geneva: World Health Organization.

Zhang, W., Liu, H., Rojas, M., Caldwell, R. W. & Caldwell, R. B. (2011). Anti Inflammatory Therapy for Diabetic Retinopathy. Immunotherapy, 3(5), 609-628.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.