Exploration of Potential Actinomycetes from CIFOR Forest Origin as Antimicrobial, Antifungus, and Producing Extracellular Xylanase

Sipriyadi Sipriyadi, Yulin Lestari, Aris Tri Wahyudi, Anja Meryandini, Maggy Thenawidjaja Suhartono


This study aimed to isolate and explore the actinomycetes of CIFOR forest origin as an antimicrobial and antifungal agent, to produce an extracellular xylanase, and to identify isolates based on 16S rRNA gene sequences. Actinomycetes were isolated using Humic-acid Vitamin-B agar (HV) media. Actinomycetes colonies that grow on the medium HV was subsequently purified by growing them on yeast malt agar (YMA) media), then an antagonistic test of selected bacteria against Bacillus sp., Escherichia coli, Fusarium oxysporum, and Sclerotium sp was performed. Xylanase activity test was detected by observing a clear zone, followed by identification. Total of 35 isolates of actinomycetes isolated based on their colony morphology characteristics and diverse types of spore chains showed Streptomyces spp. of isolates CFR-06, CFR-15, CFR-17, CFR-18, and CFR-19 were able to inhibit the growth of Bacillus sp.. The highest inhibition zone has a diameter of 10.1 mm (isolate CFR-17). Isolates CFR-01 and CFR-15 were able to inhibit the growth of E. coli with the highest inhibition zone diameter of 5.1 mm (isolate CFR-15). Isolates CFR-29 and CFR-12 were able to inhibit the growth of F. oxysporum while isolate CFR-35 were able to inhibit the growth of Sclerotium sp.. Xylanase activity test showed that isolates CFR-12, CFR-20, CFR-22, CFR-24, CFR-25, CFR-30, CFR-33, CFR-34 have an ability to produce extracellular xylanase enzyme. Actinomycetes isolate (Xyl_22) as a potential xylanase enzyme producer was closely related with Streptomyces drozdowicii by the maximum similarity of 99%.

How to Cite

Sipriyadi, S., Lestari, Y., Wahyudi, A., Meryandini, A., & Suhartono, M. T. (2016). Exploration Potential CIFOR Forest actinomycetes origin as Antimicrobial, Anti Fungus and Producing Enzymes Extracellular Xylanase. Biosaintifika: Journal of Biology & Biology Education, 8(1), 94-102.


actinomycetes; antimicrobial, antifungus; xylanase extracellular

Full Text:



Aghighi, S. S., Bonjar, G.H., Rawashdeh, R., Batayneh, S., & Saadoun, I. (2004) First report of antifungal spectra of activity of Iranian actinomycetes strains against Alternaria solani, Alternaria alternate, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and Saccharomyces cerevisiae. Asian Jof Plant Sci, 3 (4), 463-471.

Ali, M. K., Rudolph, F.B. & Bennett G.N. (2004). Thermostable xylanases 10B from Clostridium acetobotylicum ATCC824. J of Industrial Microbiol and Biotechol, 31, 229-234

Ambarwati, & Trisnawati, G. A. (2009). Isolasi actinomycetes tanah sawah sebagai penghasil antibiotik. Jurnal Penelitian Sains & Teknologi,10(2), 101- 111.

Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G.S. (2001). Microbial xylanase and their industrial application. Appl Microbiol Biotechnol, 56(3-4), 326-338.

Brook, F. G., Butel J. S., & Morse S. A. 2005. Mikrobiologi kedokteran edisi 22. Jakarta: Salemba Medika Indonesia

Cheng, H. L., Wang, P. I., & Chen, Y. C. (2008). Cloning, characterization and phylogenetic relationships of stxI, and endoxylanase-encoding gen from Streptomyces thermonitrificans NTU-88. Biores Technol, 99(1), 227-231.

Cao, L., Qiu, Z., You, J., Tan, H.,& Zhou, S. (2005). Isolation and characterization of endophytic Streptomyces antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol Lett, 247(2), 147-152.

Deesukon, W., Yuichi N., Naoki H., Tatsuji, S., & Wasana, S. (2011). Purification, characterization and gene cloning of two forms of a thermostable endoxylanase from Streptomyces sp. SWU10. Proc Biochem, 46(12), 22552262.

Deobald, L. A., Crawford, D. (2002). Lignocellulose biodegradation. Didalam: Hurst, C. J., Crawford, R.L., Kudsen, G. R., Mclnerney, M. J.,Stetzenbach, L. D., (ed). Manual of enviromental microbiology. Edke-2. Washington: ASM Pr

Devillard, E., Christel, B. M., Harry, J. F., Karen, P. S., James, N., John, W., Jean-Pierre, J., & Evelyne, F. (2003). Characterization of XYN10B, a modular xylanase from the ruminal protozoan polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds tocellulose. Biochem J, 373(2), 495-503.

El-Tarabily, K. A., Soliman, M. H., Nassar, A.H., & Al-Hassani, H. A.(2000). Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol, 49(5), 573-583.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootsrap. Evolution, 39, 783-791.

Ghadin, N., Noraziah, M. Z., Vikineswary, S., Norhidayah, B., Dayang, F. B., Hing, H.L & Nik, M. S. (2008). Isolation and characterization of novel endophytic Streptomyces SUK 06 with antimicrobial activity from Malaysian plant. Asian J Plant Sci, 7(2), 189-194.

Gilbert, H. J., Hazlewood G. P. (1993). Bacterial cellulases and xylanases. J General Microbiol. 139(2), 187-194.

Georis, J., Giannotta, F., De Buylb, E, Granier B, & Frere J. M. (2000). Purification and properties of three endo-?-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme and Microbiol Technol, 26(2), 178-186.

Kaneko, S.,Yuval, S., & Yitzkak, H. (2000). Purification and characterization of a family G/11 ?-xylanase from Streptomyces olivaceoviridis E-86. Bioschi Biotechl Biochem, 64(2), 447-451.

Kansoh, A. L.,& Nagieb, Z. A. (2004). Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in bioleaching of shoft wood kraft pulp. Antonie Van Leeuwenhoek, 85(2),103-114

Li Ning., Kun, M., Yaru, W., Pengjun, S., Huiying, L., Yingguo, B., Peilong, Y.,& Bin, Yao. (2008). Cloning, expression, and characterization of a news xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol, 80(2), 231240.

Lin, J., Ndlovu, L. M., Singh, S., & Pillay, B. (1999). Purification and biochemical characteristics of ?-D-xylanase from thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotech Appl Biochem, 30(1), 73-79.

Madigan, M. T., Martinko, J. M., & Parker,J. (2000). Brock: biology of microorganism. New Jersey American: Prentice Hall.

Marchesi, J. R.,Takuichi, S., Andrew, J. W., Tracey, A. M., John, C. F., Sarah, J. H., & William, G. W. (1998). Design and evaluation of useful bacterium-spesific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol, 64(2), 795-799.

Oskay, M. (2009). Antifungal and antibacterial compounds from Streptomyces strains. African J of Biotechnol, 8(13), 135-142.

Perez, J., Munoz, D. J., Rubia T. D. L., & Martinez J. (2002). Biodegradation and biological treatment of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5(2), 53-63.

Rochmawati, I., Muslimin, I., & Reni, A. 2015. Aktivitas antibakteri ekstrak kerang pisau (Solen sp.) dan kerang simping (Placuna placenta). Biosaintifika: Journal of Biology & Biology Education, 7(2), 128-135.

Ruiz-Arribas, A., Abalos, J. M. F., Shanchez, P., Garda, A. L., & Santamaria, R. I. (1995). Over production, purification, and biochemical characterizationof a xylanases (xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol, 61(6), 2414-2419.

Ryan, R. E.,De Buylb,V. & E, Granier B. (2003). Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzym and Microbiol Technol, 33(6), 775-78.

Saha, B. C. (2003). Hemicellulose bioconversion. J Microbiol Biotechnol, 30(5), 279-291.

Semedo, L. T., Gomes, R. C., Linhares, A. A., Duarte, G. F., Nascimento, R. P., Rosado, A. S., Margis, P. M., Margis, R., Silva, K. R.,Alviano, C. S., Manfio, G. P., Soares, R. M., Linhares, L. F., & Coelho, R. R. (2004). Streptomyces drozdowiczii sp. nov., a novel cellulolytic Streptomycetes from soil in Brazil. Int J Syst Evol Microbiol, 54(4), 1323-1328.

Shirling, E. B., & Gottlieb, D. (1996). Methods for characterization of Streptomycetes species. Int J Syst Bacteriol, 16(3), 313-340.

Silveira, F. Q. P., Ximenes, F. A., Cacais, A.O., Milagres, A.M., Meduros, C.V., Puls, J. & Filho, E. X. (1999). Hydrolysis of xylans by enzyme systems from solid cultures of Trichoderma harzianum strains. Braz J of Medial and Biol Res, 32(8), 947-952.

Subraminayan, S., & Prema, S. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology and aplication. Critical Rev Biotechnol, 22(1), 33-64.

Sunna, A., & Antranikian, G. (1997). Characterization of the xilanase from the new isolated thermophilic xylan-degrading Bacillus thermoleovarans galur K-3d and Bacillus flavothermus galur LB3A. FEMS Microbial Lett, 148, 209-216.

Taechowisan, T., Lu, C., Shen, Y., Lumyong, S. (2005). Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc 130 and their antifungal activity. Microbiol, 151(5), 1691-1695.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likehood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10), 2731-2739.

Tseng, M. .J., Yap, M.N., Ratanakhanokchai, K., Kyu, K.L., & Chen, S.T. (2002). Purification and partial characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme and Microbiol Technol, 30(5), 590-595.

Wang, Y., Zhang, H., He, Y., Luo, H., & Yao, B. (2007). Characterization, gene cloning, and expression of a novel xylanase XYNB from Streptomyces olivaceoviridis A1. Aquaculture, 267(1), 328-334.

DOI: https://doi.org/10.15294/biosaintifika.v8i1.5052


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.