An Analysis of Partial DNA Sequence of Meisa1 Gene on Sweet and Bitter Cassavas (Manihot esculenta Crantz.)

Dewi Indriyani Roslim(1), Fitriyatun Nisa(2), Herman Herman(3),

(1) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Riau, Indonesia, Kampus Bina Widya, Jl. HR Soebrantas, Panam, Pekanbaru 28293, Riau
(2) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Riau, Indonesia, Kampus Bina Widya, Jl. HR Soebrantas, Panam, Pekanbaru 28293, Riau
(3) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Riau, Indonesia, Kampus Bina Widya, Jl. HR Soebrantas, Panam, Pekanbaru 28293, Riau


Sweet and bitter taste on cassava tuber is affected by starch metabolisms. Meisa1 gene is a gene in cassava (Manihot esculenta Crantz.) encoding isoamylase1 enzyme involved in starch metabolisms. This study aimed to analyze partial DNA sequences of Meisa1 gene on sweet and bitter cassavas collected by Genetics Laboratory, Department Biology, Faculty of Mathematics and Natural Sciences, Riau University, Indonesia. Methods included total DNA extraction from fresh young leaves of cassava using CTAB buffer, polymerase chain reaction (PCR), electrophoresis, and sequencing. The obtained data were analyzed using MEGA software version 5. The results showed that there were nucleotide variations in the intron region, not in the exon region. The variations were caused by the transition substitution mutation (35.39%) and transversion substitution mutation (64.61%). The genetic distance range between seven cassava genotypes was approximately 0% to 11%. Partial DNA sequence variations of Meisa1 gene located in intron region were unable to cluster seven cassava genotypes separately into two groups based on tuber taste.

How to Cite

Roslim, D., Nisa, F., & Herman, H. (2016). An Analysis of Partial DNA Sequence of Meisa1 Gene on Sweet and Bitter Cassavas (Manihot esculenta Crantz.). Biosaintifika: Journal of Biology & Biology Education, 8(1) 103-110.


DNA sequence; Manihot esculenta Crantz; Meisa1 gene; mutation; PCR

Full Text:



Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res, 25(17), 3389-3402.

Amit, M., Donyo, M., Hollander, D., Goren, A., Kim, E., Gelfman, S., Lev-Maor, G., Burstein, D., Schwartz, S., Postolsky, B., Pupko, T., & Ast, G. (2012). Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep, 1(5), 543–556.

Asare, P. A., Galyuon, I. K. A., Sarfo, J. K., Tetteh, J. P. (2011). Morphological and molecular based diversity studies of some cassava (Manihot esculenta Crantz) germplasm in Ghana. Afr J Biotechnol, 10(63), 13900-13908.

Beyene, D., Baguma, Y., Mukasa, S. B., Sun, C., Jansson, C. (2010). Characterization and role of isoamylase1 (Meisa1) gene in cassava. Afr Crop Sci J, 18(1), 1-8.

El-Sharkawy, M. A. (1993). Drought-tolerant cassava for Africa, Asia, and Latin America. BioScience, 43(7), 441-451.

El-Sharkawy, M. A. (2003). Cassava biology and physiology. Plant Mol Biol, 53(5), 621-641.

Fassler, J. & Cooper, P. (2008). BLAST Help. Bethesda (MD): National Center for Biotechnology Information (US).

Graur, D. (2003). Single-base mutation. Natur Encyclopedia of The Human Genome, 287-290.

Griffiths, A. J. F., Wessler, S. R., Caroll, S. B., Doebley, J. (2008). Introduction to Genetic Analysis 10th. New York: WH Freeman & Company.

Han, Y., Gasic, K., Sun, F., Xu, M., Korban, S. S. (2007). A gene encoding starch branching enzyme I (SBEI) in apple (Malus x domestica, Rosaceae) and its phylogenetic relationship to Sbe genes from other angiosperms. Mol Phylogenet Evol, 43(3), 852–863.

Hannah, L. C. & James, M. (2008). The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol, 19(2), 160–165.

Howeler, R. (2006). Cassava in Asia: trends in cassava production, processing and marketing. In: Workshop on “Partnership in Modern Science to Develop a Strong Cassava Commercial Sector in Africa and Appropriate Varieties by 2020”, May 2-6, 2006, Bellagio, Italy. CIAT, Bangkok. pp. 1-38.

Irtwange, S. V. & Achimba, O. (2009). Effect of fermentation on the quality of gari. Curr Res J Biol Sci, 1(3), 150-154.

Jennings, D. L. & Iglesias, C. (2002). Breeding for crop improvement. In: R.J. Hillocks, J.M. Thresh, and A.C. Bellotti (eds). Cassava: Biology, Production, and Utilization. CAB International Publishing. p. 149-166.

Kang, G. Z., Liu, G. Q., Xu, W., Zhu, Y. J., Wang, C. Y., Ling, H. Q., Guo, T. C. (2013). Identification of the isoamylase3 gene in common wheat and its expression profile during the grain-filling period. Genet Mol Res, 12(4), 4264-4275.

Keeling, P. L. & Myers, A. M. (2010). Biochemistry and genetics of starch synthesis. Annu Rev Food Sci Technol, 1, 271–303.

Kim, S. H., Hamada, T., Otani, M., Takiko, S. (2005). Cloning and characterization of Sweetpotato isoamylase gene (IbIsa1) isolated from tuberous root. Breeding Science, 55(4), 453-458.

Lancaster, P. A. & Brooks, J. E. (1983). Cassava leaves as human food. Econ Bot, 37(3), 331-348.

Lee, S. V. & Bahaman, A. R. (2010). Modified gel preparation for distinct DNA fragment analysis in agarose gel electrophoresis. Tropical Biomedicine, 27(2), 351-354.

Lomelin, D., Jorgenson, E., Risch, N. (2010). Human genetic variation recognizes functional elements in noncoding sequence. Genome Research, 20(3), 311–319.

Marx, S. & Nquma, T. Y. (2013). Cassava as feedstock for ethanol production in South Africa. Afr J Biotechnol, 12(31), 4975-4983.

McMahon, J., White, W., Sayre, R.T. (1995). Cyanogenesis in cassava (Manihot esculenta Crantz). J Exp Bot, 46(7), 731–741.

Mohamed, M. A. H., Alsadon, A. A., & Al Mohaidib, M. S. (2010). Corn and potato starch as an agar alternative for Solanum tuberosum micropropagation. African Journal of Biotechnology, 9(1), 9199-9203.

Nakamura, Y., Umemoto, T., Takahata, Y., Komae, K., Amano, E., Satoh, H. (1996). Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm. Possible role of starch debranching enzyme in amylopectin biosynthesis. Plant Physiol, 97(3), 491-498.

Nassar, N. & Ortiz, R. (2010). Breeding cassava. Sci Am, 302(5), 78-84.

Nugraha, F., Roslim, D. I., Ardilla, Y. P. & Herman. (2014). Analisis Sebagian Sekuen Gen Ferritin2 pada Padi (Oryza sativa L.) Indragiri Hilir, Riau. Biosaintifika: Journal of Biology & Biology Education, 6(2), 70-79.

Nuwamanya, E., Baguma, Y., Kawuki, R. S., Rubaihayo, P. R. (2009). Quantification of starch physicochemical characteristics in cassava segregating population. Afr Crop Sci J, 16(3), 191-202.

Patron, N. J. & Keeling, P. J. (2005). Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J of Phycology, 41(6), 1131-1141.

Roslim, D. I., Herman, Sofyanti, N. (2015a). Plasma Nutfah Ubi Kayu di Provinsi Riau. Pekanbaru: UR Press.

Roslim, D. I., Sanjaya, S. I., Herman. (2015b). Analisis keanekaragaman genetik ubi kayu (Manihot esculenta Crantz) varietas manis dan pahit berdasarkan sekuen DNA parsial dari gen Meisa1. Makalah Seminar Nasional PERHIMPI Riau, 30 Maret 2015. Pekanbaru: Universitas Islam Riau.

Roslim, D. I., Herman, Sofyanti, N., Chaniago, M., Restiani, R., Novita, L. (2016). Characteristics of 22 cassavas (Manihot esculenta L., Crantz) from Riau Province, Indonesia. SABRAO J Breed Genet. in press.

Saghai-Maroof, M. A., Solimah, K. M., Jorgensen, R. A., Allard, R. W. (1984). Ribosomal DNA spacer length polymorphisme in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci, 81(24), 8014-8018.

Scott, G. L., Best, R., Rosegrant, M., Bokanga, M. (2002). Roots and tubers in the global food system: A vision. Statement to the Year 2020. The International Potato Center, Centro Internacional de Agricultura Tropical (CIAT), International Food Policy Research Institute (IFPRI), International Institute of Tropical Agriculture (IITA), and International Plant Genetic Resources Institute (IPGRI), Lima, Peru.

Sun, C., Ahlandsberg, S., Jansson, C. (1999). Analysis of isoamylase gene activity in wildbarely indicate its involvement in starch synthesis. Plant Molecular Biology, 40, 431-443.

Sundberg, M., Pfister, B., Fulton, D., Bischof, S., Delatte, T., Eicke, S., Stettler, M., Smith, S. M., Streb, S., Zeeman, S. C. (2013). The heteromultimeric devranching enzyme involved in starch synthesis in Arabidopsis requires both isoamylase1 and isoamylase2 subunits for complex stability and activity. Plos One, 8(9), e75223.

Takashima, Y., Senoura, T., Yoshizaki, T. (2007). Differential chain-length specificities twoisoamylase type starch-debranching enzymes from developing seeds of kidney bean. Bioscience Biotechnology and Biochemistry, 71(9), 2308-2312.

Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 10(3), 512-526.

Tonukari, N. J. (2004). Cassava and the future of starch. Electron J Biotechno, 7(1), 5-8.

Valdez, H. A., Busi, M. V., Wayllace, N. Z., Parisi, G., Ugalde, R. A., Gomez-casati, D. F. (2008). Role of the N-Terminal starch-binding domains in the kinetic properties of Starch Synthase III from Arabidopsis thaliana. Biochemistry, 47(9), 3026–3032.

Wilson, W. M. & Dufour, D. L. (2002). Why “bitter” cassava? The productivity of “bitter” and “sweet” cassava in a Tukanoan Indian settlement in the Northwest Amazon. Econ Bot, 56(1), 49-57.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.