The Effect of Physical Activity agains the Telomere Length in the Leukocytes Cells of KONI Athletes
(1) Department Anatomy, Faculty of Medicine, YARSI University, Jakarta
(2) Department Microbiology-Parasitology, Faculty of Medicine, YARSI University, Jakarta
(3) Department Anatomy, Faculty of Medicine, YARSI University, Jakarta
(4) Department Biochemistry, Faculty of Medicine, YARSI University, Jakarta
(5) Department Anatomy, Faculty of Medicine, YARSI University, Jakarta
Abstract
Telomeres are strands of non coding DNA at the ends of chromosomes that have the primary function to protect DNA from damage and maintain chromosomal stability. Physical exercise will increase the antioxidant activity can increase telomere proteins, lengthen telomeres and or protein networks associated with telomere so that the telomere remains long, or stopping telomere shortening. Telomere length was also associated with age. The purpose of the research was to determine telomere length of leukocyte cells in the KONI (Indonesian National Sports Committee) athletes in Jakarta. The research method is descriptive, by measuring telomere length using quantitative PCR on leukocyte cells. Samples are KONI athletes from several sports, including men and women athletes, with ages between 15-20 years. Used a control group (not athletes) is students of the Faculty of Medicine, University of YARSI. The results showed that there was no significant difference (p> 0.05) between telomere length group of athletes with the control group in both sexes. Similarly, telomere length between athlete male with female athletes also showed no significant difference (p> 0.05). It was concluded that physical exercise in athletes KONI at the age of 15- 20 years had no effect on telomere length in leukocytes. The results of this study provide information about the telomere length in Indonesian athletes at an early age.
Keywords
Full Text:
PDFReferences
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S., & Lansdorp, P. M. (2012). Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet, 8(5), e1002696.
Azwar, A. (2004). Tubuh sehat ideal dari segi kesehatan. In Makalah disampaikan pada Seminar Kesehatan Obesitas, Senat Mahasiswa Fakultas Kesehatan Masyarakat UI, Sabtu (Vol. 15, pp. 1-7).
Barrett, E. L., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging cell, 10(6), 913-921.
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic acids research, 30(10), e47-e47.
O’Callaghan, N. J., & Fenech, M. (2011). A quantitative PCR method for measuring absolute telomere length. Biological procedures online, 13(1), 3.
Chen, W., Kimura, M., Kim, S., Cao, X., Srinivasan, S. R., Berenson, G. S., ... & Aviv, A. (2011). Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(3), 312-319.
Cherif, H., Tarry, J. L., Ozanne, S. E., & Hales, C. N. (2003). Ageing and telomeres: a study into organ‐and gender‐specific telomere shortening. Nucleic acids research, 31(5), 1576-1583.
Cherkas, L. F., Hunkin, J. L., Kato, B. S., Richards, J. B., Gardner, J. P., Surdulescu, G. L., ... & Aviv, A. (2008). The association between physical activity in leisure time and leukocyte telomere length. Archives of internal medicine, 168(2), 154-158.
Collins, M., Renault, V., Grobler, L. A., Gibson, A. S. C., Lambert, M. I., Derman, E. W., ... & Mouly, V. (2003). Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Medicine & Science in Sports & Exercise, 35(9), 1524-1528.
Dalgård, C., Benetos, A., Verhulst, S., Labat, C., Kark, J. D., Christensen, K., ... & Aviv, A. (2015). Leukocyte telomere length dynamics in women and men: menopause vs age effects. International journal of epidemiology, 44(5), 1688-1695.
Enokido, M., Suzuki, A., Sadahiro, R., Matsumoto, Y., Kuwahata, F., Takahashi, N., ... & Otani, K. (2014). Parental care influences leukocyte telomere length with gender specificity in parents and offsprings. BMC psychiatry, 14(1), 277.
Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., ... & Bekaert, S. (2014). Gender and telomere length: systematic review and meta-analysis. Experimental gerontology, 51, 15-27.
Hunt, S. C., Chen, W., Gardner, J. P., Kimura, M., Srinivasan, S. R., Eckfeldt, J. H., ... & Aviv, A. (2008). Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa heart study. Aging cell, 7(4), 451-458.
Kim, S., Parks, C. G., DeRoo, L. A., Chen, H., Taylor, J. A., Cawthon, R. M., & Sandler, D. P. (2009). Obesity and weight gain in adulthood and telomere length. Cancer Epidemiology and Prevention Biomarkers, 18(3), 816-820.
Laine, M. K., Eriksson, J. G., Kujala, U. M., Raj, R., Kaprio, J., Bäckmand, H. M., ... & Sarna, S. (2015). Effect of intensive exercise in early adult life on telomere length in later life in men. Journal of sports science & medicine, 14(2), 239.
Ludlow, A. T., Zimmerman, J. B., Witkowski, S., Hearn, J. W., Hatfield, B. D., & Roth, S. M. (2008). Relationship between physical activity level, telomere length, and telomerase activity. Medicine and science in sports and exercise, 40(10), 1764.
Ludlow, A. T., & Roth, S. M. (2011). Physical activity and telomere biology: exploring the link with aging-related disease prevention. Journal of aging research, 2011.
Mather, K., Milburn, P., Parslow, R., Anstey, K., Jorm, A., Christensen, H., & Easteal, S. (2007). Is telomere length a biomarker of ageing?. Australasian Journal on Ageing, 26(2), A48-A49.
Mundstock, E., Zatti, H., Louzada, F. M., Oliveira, S. G., Guma, F. T., Paris, M. M., ... & Sarria, E. E. (2015). Effects of physical activity in telomere length: systematic review and meta-analysis. Ageing research reviews, 22, 72-80.
Nawrot, T. S., Staessen, J. A., Gardner, J. P., & Aviv, A. (2004). Telomere length and possible link to X chromosome. The Lancet, 363(9408), 507-510.
Østhus, I. B. Ø., Sgura, A., Berardinelli, F., Alsnes, I. V., Brønstad, E., Rehn, T., ... & Nauman, J. (2012). Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PloS one, 7(12), e52769.
Saßenroth, D., Meyer, A., Salewsky, B., Kroh, M., Norman, K., Steinhagen-Thiessen, E., & Demuth, I. (2015). Sports and exercise at different ages and leukocyte telomere length in later life–Data from the Berlin Aging Study II (BASE-II). PloS one, 10(12), e0142131.
Shiels, P. G., McGlynn, L. M., MacIntyre, A., Johnson, P. C., Batty, G. D., Burns, H., ... & McGinty, A. (2011). Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PloS one, 6(7), e22521.
Theimer, C. A., & Feigon, J. (2006). Structure and function of telomerase RNA. Current opinion in structural biology, 16(3), 307-318.
Werner, C., Fürster, T., Widmann, T., Pöss, J., Roggia, C., Hanhoun, M., ... & Haendeler, J. (2009). Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation, 120(24), 2438-2447.
Zhu, H., Wang, X., Gutin, B., Davis, C. L., Keeton, D., Thomas, J., ... & Van Der Harst, P. (2011). Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. The Journal of pediatrics, 158(2), 215-220.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.