Flavonoid Production in Callus Cultures from Mesocarp of Stelechocarpus burahol

Noor Aini Habibah(1), Sukarti Moeljopawiro(2), Kumala Dewi(3), Ari Indrianto(4),


(1) Doctorate Program of Faculty of Biology, Gadjah Mada University, Indonesia
(2) Faculty of Biology, Gadjah Mada University
(3) Faculty of Biology, Gadjah Mada University
(4) Faculty of Biology, Gadjah Mada University

Abstract

Stelechocarpus burahol is one of the medicinal plants that contains flavonoids. The study was carried out to know flavonoid production of cultures in vitro S. burahol from mesocarp explants. Mesocarp explants were cultured on MS medium containing different combination and concentration of plant growth regulators i.e. picloram (5, 7.5 and 10 mg/L) and 2, 4-D (10, 15 and 20 mg/L) under dark condition. Induction of callus formation started on the 20.29th to the 29.86th days. Medium supplemented with Picloram and dark state proved to be the best condition for optimum callus induction from mesocarp explants of S. burahol. Callus grown on medium with the addition of 7.5 mg/l Picloram produces the highest flavonoid. The maximum production of the secondary metabolite was obtained from 8 weeks old callus. However, by the time of callus ageing, its output has declined. It could be concluded that callus cultures from mesocarp S. burahol can be used for flavonoid production. 

How to Cite

Habibah, N. A., Moeljopawiro, S. Dewi, K. & Indrianto, A. (2016). Flavonoid Production in Callus Cultures from Mesocarp of Stelechocarpus burahol. Biosaintifika: Journal of Biology & Biology Education, 8(2), 214-221.

Keywords

mesocarp; callus; Stelechocarpus burahol; flavonoid

Full Text:

PDF

References

Amoo, S. O., Aremu, A. O., & Van Staden, J. (2012). In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell, Tissue and Organ Culture (PCTOC), 111(3), 345-358.

Amoo, S. O., & Van Staden, J. (2013). Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell, Tissue and Organ Culture (PCTOC), 112(2), 249-256.

Aslam, J., Mujib, A., Fatima, Z., & Sharma, M. P. (2010). Variations in vinblastine production at different stages of somatic embryogenesis, embryo, and field-grown plantlets of Catharanthus roseus L.(G) Don, as revealed by HPLC. In Vitro Cellular & Developmental Biology-Plant, 46(4), 348-353.

Balasubramanya, S., Rajanna, L., & Anuradha, M. (2012). Effect of plant growth regulators on morphogenesis and forskolin production in Plectranthus barbatus Andrews. In Vitro Cellular & Developmental Biology-Plant, 48(2), 208-215.

Barro, F., Cannell, M. E., Lazzeri, P. A., & Barcelo, P. (1998). The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theoretical and Applied Genetics, 97(5-6), 684-695.

Chaâbani, G., Tabart, J., Kevers, C., Dommes, J., Khan, M. I., Zaoui, S., ... & Karray-Bouraoui, N. (2015). Effects of 2, 4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia. Acta Physiologiae Plantarum, 37(2), 1-9.

Calalb, T., Nistreanu, A., Oroian, S., & Samarghitan, M. (2014). Callus Induction And Biomass Accumulation In Vitro In Explants From Chokeberry (Aronia Melanocarpa (Michx.) Elliot) Fruit. Acta Agrobotanica, 67(3), 53–64.

Calderon, A. A., Zapata, J. M., & Ros Barcelo, A. (1995). Peroxidase isoenzymes as markers of cell de-differentiation in grapevines (Vitis vinifera). Vitis, 34(4), 207-210.

Cassidy, A., O’Reilly, É. J., Kay, C., Sampson, L., Franz, M., Forman, J. P., ... & Rimm, E. B. (2011). Habitual intake of flavonoid subclasses and incident hypertension in adults. The American journal of clinical nutrition, 93(2), 338-347.

Chandra, R., Bajpai, A., Gupta, S., & Tiwari, R. K. (2004). Embryogenesis and plant regeneration from mesocarp of Psidium guajava L.(guava). Indian Journal of Biotechnology, 3(2), 246-248.

Darusman, H. S., Rahminiwati, M., Sadiah, S., Batubara, I., Darusman, L. K. & Mitsunaga, T. (2012). Indonesian Kepel Fruit (Stelechocarpus burahol) as oral Deodorant. Research Journal of Medicinal Plants. 6(2), 180-188.

Estrada-Zúñiga, M. E., Cruz-Sosa, F., Rodriguez-Monroy, M., Verde-Calvo, J. R., & Vernon-Carter, E. J. (2009). Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth. Plant Cell, Tissue and Organ Culture (PCTOC), 97(1), 39-47.

Figueiredo, S. F. L., Viana, V. R. C., Simões, C., Albarello, N., Trugo, L. C., Kaplan, M. A. C., & Krul, W. R. (1999). Lignans from leaves, seedlings and micropropagated plants of Rollinia mucosa (Jacq.) Baill.–Annonaceae. Plant cell, tissue and organ culture, 56(2), 121-124.

Figueiredo, S. F. L., Simões, C., Albarello, N., & Viana, V. R. C. (2000). Rollinia mucosa cell suspension cultures: establishment and growth conditions. Plant cell, tissue and organ culture, 63(2), 85-92.

Gurel, E., Yucesan, B., Aglic, E., Gurel, S., Verma, S. K., Sokmen, M., & Sokmen, A. (2011). Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell, Tissue and Organ Culture (PCTOC), 104(2), 217-225.

Habibah, N. A., Sumadi, & Ambar, S. (2013). Optimization of Leaf Surface Sterilization and Endophytic Elimination on Burahol. Biosaintifika: Journal of Biology & Biology Education, 5(2), 94-99.

Hao, G., Du, X., Zhao, F., Shi, R., & Wang, J. (2009). Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell, Tissue and Organ Culture (PCTOC), 97(2), 175-185.

Khan, M. F., Negi, N., Sharma, R., & Negi, D. S. (2013). Bioactive flavanoids from Glycosmis arborea. Organic and medicinal chemistry letters, 3(1), 1.

Butiuc-Keul, A. L., Vlase, L., & Crăciunaş, C. (2012). Clonal propagation and production of cichoric acid in three species of Echinaceae. In Vitro Cellular & Developmental Biology-Plant, 48(2), 249-258.

Lemos, E. E. P., & Baker, D. A. (1998). Shoot regeneration in response to carbon source on internodal explants of Annona muricata L. Plant growth regulation, 25(2), 105-112.

Lewis, D. R., Ramirez, M. V., Miller, N. D., Vallabhaneni, P., Ray, W. K., Helm, R. F., ... & Muday, G. K. (2011). Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiology, 156(1), 144-164.

Lin, Y., Shi, R., Wang, X., & Shen, H. M. (2008). Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets, 8(7), 634–646.

Misra, B. B., & Dey, S. (2013). Developmental variations in sesquiterpenoid biosynthesis in East Indian sandalwood tree (Santalum album L.). Trees, 27(4), 1071-1086.

Molchan, O., Romashko, S., & Yurin, V. (2012). L-tryptophan decarboxylase activity and tryptamine accumulation in callus cultures of Vinca minor L. Plant Cell, Tissue and Organ Culture (PCTOC), 108(3), 535-539.

Moriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T., & Omura, M. (1999). One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures. Plant and cell physiology, 40(6), 651-655.

Oliveira, L. M., Paiva, R., de Santana, J. R. F., Alves, E., Nogueira, R. C., & Pereira, F. D. (2008). Effect of cytokinins on in vitro development of autotrophism and acclimatization of Annona glabra L. In Vitro Cellular & Developmental Biology-Plant, 44(2), 128-135.

Padilla, I. M. G., & Encina, C. L. (2004). Micropropagation of adult cherimoya (Annona cherimola Mill.) cv. Fino de Jete. In Vitro Cellular & Developmental Biology-Plant, 40(2), 210-214.

Purwantiningsih, H. A., & Purwantini, I. (2010). Anti-hyperuricemic activity of the kepel (Stelechocarpus burahol (Bl.) Hook. F. & Th.) leaves extract and xanthine oxidase inhibitory study. Int International Journal of Pharmacy and Pharmaceutical Sciences, 2(2), 122-7.

Rosa, Y. B. C. J., Aizza, L. C. B., Bello, C. C. M., & Dornelas, M. C. (2013). The PmNAC1 gene is induced by auxin and expressed in differentiating vascular cells in callus cultures of Passiflora. Plant Cell, Tissue and Organ Culture (PCTOC), 115(2), 275-283.

Tisnadjaja, D., Saliman, E., Silvia, & Simanjuntak, P. (2006). Study of kepel (Stelechocarpus burahol (Blume) Hook & Thomson) as an anti-oxidative compounds containing fruit. Biodiversitas. 7 (2), 199-209

Siregar, N. (2005). Atlas Benih Tanaman Hutan Indonesia. Jilid V. Ed. Dede Rohadi, Darmawati F. Djam ’An, Aam Aminah, Ricky Sitorus. Bogor: Balai Penelitian Teknologi Perbenihan.

Sivanandhan, G., Dev, G. K., Jeyaraj, M., Rajesh, M., Muthuselvam, M., Selvaraj, N., ... & Ganapathi, A. (2013). A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma, 250(4), 885-898.

Sunardi, C. 2010. Structure of Steroids in Stelechocarpus burahol Hook F. & Thomson Stem Bark. The Journal of Indonesian Medicinal Plant. 3 (2).

Sunarni, T., Pramono, S. & Asmah, R. (2007). Flavonoid antioksidan penangkap radikal dari daun kepel (Stelechocarpus burahol (Bl.) Hook f. & Th.). Majalah Farmasi Indonesi, 18(3), 111-116.

Zenk, M. H. (1978). The impact of plant cell cultures on industry. In: Thorpe EA (ed) Frontiers of plant tissue culture. The International Association of Plant Tissue Culture, Calgary, pp. 1-14.

Zhao, S. Z., Sun, H. Z., Gao, Y., Sui, N., & Wang, B. S. (2011). Growth regulator-induced betacyanin accumulation and dopa-4, 5-dioxygenase (DODA) gene expression in euhalophyte Suaeda salsa calli. In Vitro Cellular & Developmental Biology-Plant, 47(3), 391-398.

Zhao, L., Gao, L., Wang, H., Chen, X., Wang, Y., Yang, H., ... & Xia, T. (2013). The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Functional & Integrative Genomics, 13(1), 75-98.

Zou, Y., Lu, Y., & Wei, D. (2004). Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. Journal of Agricultural and Food Chemistry, 52(16), 5032-5039.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.