Efect of Gamma 60Co Irradiation on The Growth, Lipid Content and Fatty Acid Composition of Botryococcus sp. Microalgae

Dini Ermavitalini, Niki Yuliansari, Endry Nugroho Prasetyo, Triono Bagus Saputro

Abstract


Botryococcus sp. is one of microalgae species that has a high lipid content as much as 75% of their dry weight. But, lipid production by microalgae is regulated by their environmental condition (pH, light, temperature, nutrition, etc). Mutagenesis induced by Gamma 60Co irradiation can be utilized to alter the Botryococcus sp. genetic to get microalgae mutant strain that can produce a higher lipid content than the wild strain. Botryococcus sp. was irradiated with different doses of gamma ray of 60Co (0, 2, 4, 6, and 10 Gy), and the effect on the growth, lipid content, and fatty acid composition of microalgae were observed. Research design used is random complete (RAL) with 95 % confident level for quantitive analysis based on the biomass and lipid contents. More over fatty acid composition was analyzed by Gas Cromatography-Mass Spectrometry (GC-MS). Results showed that Gamma irradiated gave an effect on growth and lipid content of Botryococcus sp. But between the control treatment (0 Gy) with microalgae irradiated dose of 2 Gy, 4 Gy and 6 Gy were not significantly different. Whereas between the control with 10 Gy irradiated was significantly different. The highest biomassa and lipid content are found in 10 Gy irradiated microalgae with 0.833 gram biomass and 41% lipid content. Fatty acid profile of Botryococcus sp. control has 6 fatty acids while 10 Gy irradiated microalgae has 12 fatty acids, with the long-chain fatty acids increased, whereas short-chain fatty acids decreased.


Keywords


Botryococcus sp.; Gamma 60Co Irradiation; growth; lipid content; fatty acid composition

Full Text:

PDF

References


Acquaah, G. (2007). Principles of plant genetics and breeding. United Kingdom: Blackwell Publishing.

Agarwal, R., Rane, S. S., & Sainis, J. K. (2008). Effect of 60Co G radiation on thylakoid membrane function in Anacystis nidulans. Journal Photochem Photobiol, 91(1), 807-815.

Ahloowalia, B. S., & Maluszynski, M. (2001). Induced mutations a new paradigm in plant breeding. Euphytica, 118(2), 167-173.

Andersen, R. A. (2005). Algal culturing technique. San Diego: Elsevier Publishing Inc.

Balai Budidaya Air Payau. (2013). Standart operasional prosedur. Situbondo: Direktorat Jenderal Perikanan dan Budidaya Kementrian Kelautan dan Perikanan.

Bellou, S., Baeshen, M. N., Elazzazy, A. M., & Aggeli, D. (2013). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476-1493.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Journal Biochem Physiol, 37(8), 911-917.

Canakci, M., & Van Gepen, J. V. (2003). A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans Asae, 46(4), 945-954.

Chakravarty, B., & Sen, S. (2001). Enhancement of regeneration potential and variability by gamma irradiation in cultured cell of Scilla indica. Biologia Plantarum, 44(2), 193-199.

Cheng, J., Huang, Y., Feng, J., Sun, J., Zhou, J., & Cen, K. (2014). Mutate Chlorella sp. by nuclear irradiation to fix high concentration of CO2. Bioresource Technology, 136, 496-501.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Advances, 25(3), 294-306.

Derner, R. B. (2006). Microalgae, products and applications. Ciencia Rural, 36(6), 1959-1967.

Fedorov, A. S., Tsygankov, A. A., Rao, K. K., & Hall, D.O. (2001). Production of hydrogen by an Anabaena variabilis mutant in photobioreactor under aerobic outdoor conditions. Biohydrogen, 2, 223-228.

Han, J. S., Yoon, M., Joe, M., Park, H., Lee, S. G., & Lee, P. C. (2014). Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess Biosyst. Eng., 37(12), 24372444.

Hannon, M., Gimpel, J., Tran, M., Rasala, B., & Mayeld, S. (2010). Biofuels from algae : challenges and potential. Biofuels, 1(5), 763-784.

Hu, G., Yong, F. Zhang, L., Yuan, C., Wang, J., Li, W., Hu, Q., & Li, F. (2013). Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions. PLoS One, 8(4), 1-8.

Hu, H., & Gao, K. (2006). Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett., 28(13), 987-992.

Hwang, J. W., Ahn, S. J., Kwon, J. B., Kim, S. H., Kim, S. Y. K., & Kim, D. S. (2014). Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol. Biol. Rep., 41(11), 7671-7681.

Isnansetyo, A., & Kurniastuty. (1995). Teknik kultur phytoplankton and zooplankton: pakan alami untuk pembenihan organisme laut. Yogyakarta: Penerbit Kanisius.

Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. Enzyme Microb. Technol., 38(5), 569582.

Knothe, G. (2008). Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels, 22(2), 13581364.

Kovacs, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210.

Lestari, S., & Amrullah. (2013). Profil pertumbuhan dan analisis kandungan karbohidrat, protein, lipid mikroalga hijau biru pada medium AF-6 dengan cara penambahan substrat limbah ampas sagu. Jurnal UPI, 16, 265-271.

Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour. Technol., 102(1), 123129.

Ma, Y., Wang, Z., Zhu, M., Yu, C., Cao, Y., Zhang, D., & Zhou, G. (2013). Increased lipid productivity and TAG content in Nannochloropsis by heavy-ion irradiation mutagenesis. Bioresource Technology, 14(136), 360367.

Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology,17(5), 47789.

Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol., 90(4), 142941.

Sari, A. M., Mayasari, H. E., Rachimoellah, & Zullaikah, S. (2013). Pertumbuhan dan kandungan lipida dari Botryococcus braunii dalam media air laut. Jurnal Teknik Pomits, 2(1), 2337-3539.

Sawayama, S., Inoue, S., & Yokoyama, S. (1995). Phylogenetic position of Botryococcus braunii based on small subunit of ribosomal RNA sequence data. Journal of Phycology, 31(3), 419-420.

Song, M. M., Pei, H. Y., Hu, W. R., & Ma, G. X. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technology, 141, 24551.

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience & Bioengineering, 101(2), 8796.

Susilowati, R., & Amini, S. (2010). Kultivasi mikroalga Botryococcus braunii sebagai sumber bahan energi alternatif dengan sistem indoor dan outdoor. Prosiding Forum Teknologi Akuakultur, 615-620. Jakarta: Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan Perikanan.

Tammam, A. A., Allam, M. M., & Osman, M. (2005). Mutagenesis of Dunaliella salina. International Journal of Agriculture & Biology, 7(3), 477481.

Wi, S. G., Chung, B. Y., Kim, J. H., Baek, M. H., Yang, D. H., Lee, J. W., and Kim, J. S. (2005). Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. Journal of Plant & Biology, 48(2), 195-200.

Yang, F., Hanna, M., & Sun, R., (2012). Value-added uses for crude glycerola byproduct of biodiesel production. Biotechnology for Biofuels, 5(13), 2-10.

Yoon, M., Jong-il, C., Gwang, H. K., Dong, H. K., Don, H. P. (2013). Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioprocess & Biosystem Engineering, 36(6), 765-774.




DOI: https://doi.org/10.15294/biosaintifika.v9i1.6783

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.