Molecular Identification of Endophytic Fungi from Bark of Raru (Cotylelobium melanoxylon) that Produce the Antibacterial Compounds

Uswatun Hasanah(1), Riwayati Riwayati(2), Idramsa Idramsa(3), Eko Prasetya(4),


(1) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Medan
(2) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Medan
(3) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Medan
(4) Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Medan

Abstract

The Dipterocarpaceae plant, raru (Cotylelobium melanoxylon) is widespread in Southeast Asia. The bark of raru has been used by local communities in North Sumatera as antidiarrheal drugs due to its antibacterial compounds. The antibacterial activity of the raru’s bark is induced by endophytic fungi that live in the region of the bark. This study aimed to identify the endophytic fungi-producer of antibacterial compounds in the bark of raru (C. melanoxylon) by means of molecular analysis. In general, endophytic fungi have the ability to inhibit the growth of pathogenic bacteria. Thirty-eight isolates of endophytic fungi were isolated from the bark of raru. Selection of isolates for antibacterial activity against Escherichia coli ATCC 35218 and Staphylococcus aureus ATCC 25923 used the dual culture assay. Selection using the dual culture assay yielded 6 endophytic fungal isolates that have the ability to inhibit the growth of test bacteria. EF10A sample was the most powerful isolate inhibiting the growth of both bacteria test. Those six bacteria molecularly identified used a sequence generated from ITS rDNA region. Based on rDNA ITS region sequences, isolate, the producers of the antibacterial compound were identified as Talaromyces cellulolyticus, Penicillium purpurogenum, Aspergillus sp., Trichoderma harzianum, and Aspergillus orizae. The results of this study can be used by researchers to explore more potential endophytic fungi in raru plants (C. melanoxylon) as a source of medicine. The data obtained need to be supported by further research to isolate the bioactive compounds that can inhibit the growth of microbial pathogens.

Keywords

Antibacterial; Cotylelobium melanoxylon; Endophytic Fungi; ITS rDNA

Full Text:

PDF

References

Alvin, A., Miller, K. I. & Neilan, B. A. (2014). Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological research, 169(7), 483-495.

Arnold, A. E. & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88(3), 541-549.

Bachir, R. G. & Benali, M. (2012). Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(9), 39-742

Bacon, C. W. & White, J. (2000). Microbial endophytes.Washington DC: CRC Press.

Black, J. G. (2002). Microbiology Principles and Exploration 5 th Ed.. USA: John Wiley & Sons Inc.

Cabedo, N., López-Gresa, M.P., Primo, J., Ciavatta, M. L. & González-Mas, M. C. (2007). Isolation and structural elucidation of eight new related analogues of the mycotoxin (-) botryodiplodin from Penicillium coalescens. Journal of agricultural and food chemistry, 55(17), 6977-6983.

Carroll, G. (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69(1), 2-9.

Croxen, M. A. & Finlay, B. B. (2010). Molecular mechanisms of Escherichia coli pathogenicity. Nature reviews. Microbiology, 8(1), 26-38

Devi, N. N. & Wahab, F. (2012). Antimicrobial properties of endophytic fungi isolated from medicinal plant Camellia sinesis. International Journal of Pharma and Bio Sciences, 3(3), 420-427.

Devi, P., Rodriguez, C., Naik, C. G. & D’souza, L., (2012). Isolation and characterization of antibacterial compound from a mangrove-endophytic fungus, Penicillium chrysogenum MTCC 5108. Indian journal of microbiology, 52(4), 617-623.

Dudeja, S. S., Giri, R., Saini, R., Suneja‐Madan, P., & Kothe, E. (2012). Interaction of endophytic microbes with legumes. Journal of Basic Microbiology, 52(3), 248-260.

González, V. & Tello, M. L. (2011). The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity, 47(1), 29-42.

Guo, L. D., Hyde, K. D. & Liew, E. C. Y. (2000). Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist, 147(3), 617-630.

Habibah, N. A. & Ambar, S. (2013). Optimasi sterilisasi permukaan daun dan eliminasi endofit pada burahol. Biosaintifika: Journal of Biology & Biology Education, 5(2), 94-99.

Hallman, J., Berg, G. & Schulz, B. (2006). Isolation procedures for endophytic microorganisms. In Microbial Root Endophytes. Berlin Heidelberg: Springer, 299-319.

Idramsa, Soetarto, E. S., Nugroho, L. H., Pratiwi, R. & Prasetya, E. (2015). Endophytic bacteria inducing antibacterial synthesis of the bark of raru (Cotylelobium melanoxylon). European Journal of Experimental Biology, 5(9), 20-26.

Leelavathi, M. S., Vani, L. & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Sciences, 3(1), 96-103.

Leonard, C. A., Brown, S. D. & Hayman, J. R. (2013). Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity. International Journal of Microbiology, 2013, 1-5.

Li, D., Xu, Y., Shao, C. L., Yang, R. Y., Zheng, C. J., Chen, Y. Y. & Wang, C. Y. (2012). Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Marine drugs, 10(1), 234-241.

Lin, X., Lu, C., Huang, Y., Zheng, Z., Su, W. & Shen, Y. (2007). Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World Journal of Microbiology and Biotechnology, 23(7), 1037-1040.

Magnani, M., Fernandes, T., Prete, C. E. C., Homechim, M., Ono, E. Y. S., Vilas-Boas, L. A. & Fungaro, M. H. P. (2005). Molecular identification of Aspergillus spp. isolated from coffee beans. Scientia Agricola, 62(1), 45-49.

Mahesh, B., Tejesvi, M. V., Nalini, M. S., Prakash, H. S., Kini, K. R., Subbiah, V. & Shetty, H. S. (2005). Endophytic mycoflora of inner bark of Azadirachta indica. Current Science, 88(2), 218-219.

Marcellano, J. P., Collanto, A. S. & Fuentes, R. G. (2017). Antibacterial Activity of Endophytic Fungi Isolated from the Bark of Cinnamomum mercadoi. Pharmacognosy Journal, 9(3), 405-409.

Matsuda, H., Asao, Y., Nakamura, S., Hamao, M., Sugimoto, S., Hongo, M., Pongpiriyadacha, Y. & Yoshikawa, M. (2009). Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon. Chemical and Pharmaceutical Bulletin, 57(5), 487-494.

Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. & Larsson, K. (2008). Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary bioinformatics online, 4, 193-201.

Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17(1), 32-37

Owen, N. L. & Hundley, N. (2004). Endophytes-the chemical synthesizers inside plants. Science progress. Science Progress, 87(2), 79-99.

Pasaribu, G. (2010). Inhibition activity of alpha glucosidase from several stem bark of raru. Jurnal Penelitian Hasil Hutan, 29(1), 10-19.

Petrini, O., Sieber, T. N., Toti, L. & Viret, O. (1993). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1(3), 185-196.

Petti, C. A., Polage, C. R. & Schreckenberger, P. (2005). The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. Journal of clinical microbiology, 43(12), 6123-6125.

Phongpaichit, S., Rungjindamai, N., Rukachaisirikul, V. & Sakayaroj, J. (2006). Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunology & Medical Microbiology, 48(3), 367-371.

Prihatiningtias, W. & Widyastuti, S. M. (2006). Senyawa bioaktif fungi endofit akar kuning (Fibraurea chloroleuca Miers) sebagai agensia antimikroba. Doctoral dissertation. Yogyakarta: Universitas Gadjah Mada.

Reddell, P. & Gordon, V. (2000). Lessons from nature: can ecology provide new leads in the search for novel bioactive chemicals from tropical rainforests? In Biodiversity: new leads for the pharmaceutical and agrochemical industries. UK: Royal Society of Chemistry.

Rodrigues, K. F., Hesse, M. & Werner, C. (2000). Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin. Journal of basic microbiology, 40(4), 261-267.

Rosenblueth, M. & Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19(8), 827-837.

Rubini, M. R., Silva-Ribeiro, R. T., Pomella, A. W., Maki, C. S., Araújo, W. L., Dos Santos, D. R. & Azevedo, J. L. (2005). Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. International Journal of Biological Sciences, 1(1), 24-33.

Santos, M. S., Orlandelli, R. C., Polonio, J. C., dos Santos Ribeiro, M. A., Sarragiotto, M. H., Azevedo, J. L. & Pamphile, J. A. (2017). Endophytes isolated from passion fruit plants: molecular identification, chemical characterization and antibacterial activity of secondary metabolites. Journal of Applied Pharmaceutical Science, 7(4), 38-43.

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W. & Miller, A. N. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246.

Sharma, P., Kaul, P., Khetmalas, M. B. & Tandon, G. D. (2013). Antibacterial, antialgal and β-lactamase inhibition activity of Penicillium purpurogenum var rubrisclerotium. Indian Journal of Research, 2(2), 17-19.

Soerianegara, I. & Lemmens, R. H. M. J. (1993). Plant resources of southeast Asia. Timber Trees: Major Commercial Timbers, 5(1), 384-391.

Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5(6), 535-544.

Tan, R. X. & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural Product Reports, 18(4), 448-459.

Vega, F. E., Simpkins, A., Aime, M. C., Posada, F., Peterson, S. W., Rehner, S. A., Infante, F., Castillo, A. & Arnold, A. E. (2010). Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecology, 3(3), 122-138.

Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H. & Song, Y. C. (2007). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23(1), 79-83.

Yamazaki, H., Omura, S. & Tomoda, H. (2010). Xanthoradone C, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Penicillium radicum FKI-3765-2. Journal of Antibiotics, 63(6), 329-330.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.