Biomass Production of Gynura procumbens Adventitious Roots in Different Type of Liquid Culture

Yosephine Sri Wulan Manuhara(1), Dannis Yuda Kusuma(2), Rafika Lailiyatul Kurnia Sari(3), Alfinda Novi Kristanti(4),


(1) Department of Biology, Faculty Sains and Teknologi, Universitas Airlangga
(2) Department of Biology, Faculty Sains and Teknologi, Universitas Airlangga, Indonesia
(3) Department of Biology, Faculty Sains and Teknologi, Universitas Airlangga, Indonesia
(4) Department of Chemistry, Faculty Sains and Teknologi, Universitas Airlangga, Indonesia

Abstract

Gynura procumbens has a potency to produce raw material for pharmaceutical industry. Liquid culture systems have significant effects on multiplication rates of organ, so the propagation technology to increase biomass of this plant or organ using the liquid culture system was necessary. This research was conducted to compare biomass production of adventitious roots of G. procumbens in different liquid culture (shake flask, temporary immersion bioreactor and balloon-type bubble bioreactor). Adventitious roots culture was maintained in Murashige and Skoog liquid medium supplemented with IBA (indole butyric acid) 5 mg/L and different concentrations of sucrose (10, 30, 50 g/L). Result showed that the highest biomass production (fresh weight) was in shake flask that was 3.9-fold higher than initial explant, while in temporary immersion system was 5.12-fold higher than initial explant, and in balloon- type bubble bioreactor was 13.1-fold higher than initial explant. The highest enhancement of adventitious roots was occurred at sucrose supplementation of 50 g/L. Based on this research we found that the best type of liquid culture to increase biomass of G. procumbens adventitious roots was balloon-type bubble bioreactor. Scaling-up of adventitious root culture are necessary to fulfill the need of raw material for pharmaceutical industry and ballon-type bubble bioreactor was the most suitable method to scale up the performance. 

Keywords

Balloon-type bubble bioreactor; Biomass production; Gynura procumbens; Liquid culture; Temporary immersion system

Full Text:

PDF

References

Baque, M. A., Elgirban, A., Lee, E. J., & Paek, K. Y. (2012). Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiology Plant, 34(2), 405–415.

Cui, X. H., Chakrabarty, D., Lee, E. J., & Paek, K. Y. (2010). Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology, 101(12), 4708-4716.

Dewir, Y. H., Indoliya, Y., Chakrabarty, D., & Paek, K. Y. (2014). Biochemical and physiological aspects of hyperhydricity in liquid culture system. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology (pp. 693-709). Springer Netherlands.

Escalona, M., Lorenzo, J. C., González, B., Daquinta, M., González, J. L., Desjardins, Y., & Borroto, C. G. (1999). Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports, 18(9), 743-748.

Etienne, H. & Berthouly, M. (2002). Temporary immersion system in plant micropropagation. Plant, Tissue, and Organ Culture, 69(3), 215-231.

Gao, M., Jiang, W., Wei, S., Lin, Z., Cai, B., Yang, L., Lou, C., He, X., Tan, J., & Chen, L. (2015). High-efficiency propagation of chinese water chestnut [Eleocharis dulcis (Burm.f.) Trin ex Hensch] using a temporary immersion bioreactor system. Plant Cell, Tissue and Organ Culture, 121(3), 761-772.

Gomes, H. T., Bartos, P. M. C., Balzon, T. A., & Scherwinski-Pereira, J. E. (2016). Regeneration of somatic embryo of oil palm (Elaeis guineensis) using temporary immersion bioreactors. Industrial Crops and Products, 89, 244-249.

Hoe, S. Z., Lee, C. N., Mok, S. L., Kamaruddin, M. Y., & Lam, S. K. (2011). Gynura procumbens Merr. Decrease blood pressure in rats by vasodilatation via inhibition of calcium channels. CLINICS, 66(1), 143-150.

Hvoslef-Eide, K. A. & Preil, W. (2005). Liquid Culture System for In Vitro Plant Propagation. Springer, Netherlands.

Kaewseejan, N., Sutthikhum, V., & Siriamornpun, S. (2015). Potential of Gynura procumbens leaves as source of flavonoid-enriched fraction with enhanced antioxidant capacity. Journal of Functional Food, 12(1), 120-128.

Lulu, T., Park, S. Y., Ibrahimuu, R., & Paeky, K. Y. (2015). Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system. Journal of Bioscience and Bioengineering, 119(6), 712-717.

Marbun, C. L. M., Toruan-Mathius, N., Utomo, C., & Liwang, T. (2015). Micropropagation of embryogenic callus of oil palm (Elaeis guineensis Jacq.) using temporary immersion system. Procedia Chemistry, 14, 122-129.

Mukherjee, S. K., Rathinasabapathi, B., & Gupta, N. (1991). Low sugar and osmotic requirements for shoots regeneration for leaf pieces of Solanum melongena L., Plant Cell, Tissue and Organ Culture, 25(1), 13-16.

Murthy, H. N., Dandin, V. S., Zhong, J. J., & Paek, K. Y. (2014). Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In Production of biomass and bioactive compounds using bioreactor technology (pp. 471-508). Springer Netherlands.

Naik, P. M., Manohar, S. H., Praveen, N., & Murthy, H. N. (2010). Effect of sucrose and pH levels on in vitro regeneration from leaf explants of Bocopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell, Tissue and Organ Culture, 100(2), 235-239.

Ng, H. K., Poh, T. F., Lam, S. K., & Hoe, S. Z. (2013). Potassium channel openers and prostacyclin play a crucial role in mediating the vasorelaxant activity of Gynura procumbens. BMC Complementary and Alternative Medicine, 13(1),188.

Nurulita, N. A., Meiyanto, E., Sugiyanto, Matsuda, E., & Kawaichi, M. (2012). Gynura procumbens modulates the microtubules integraty and enhances distinct mechanism on doxorubicin and 5-flurouracil-induced breast cancer cell death. Oriental Pharmacy Experimental Medicine, 12(3), 205-218.

Paek, K. Y., Chakrabarty, D., & Hahn, E. J. (2005). Application of bioreactor system for large scale production of horticultural and medical plants. Plant, Cell, Tissue and Organ Culture, 81(3), 287-300.

Park, Y. G., Kim, S. J., Kang, Y. M., Jung, H. Y., Prasad, D. T., Kim, S. W., Chung, Y. G., & Choi, M. S. (2004). Production of ginkgolides and bilobalide from optimized the Ginkgo biloba cell cultures. Biotechnology and Bioprocess Engineering, 9(1), 41-46.

Reis, R. V., Luis Borges, A. P. P., Chierrito, T. P. C., de Souto, E. R., de Souza, L. M., Iacomini, M., de Oliveira, A. J. B., & Goncalves, R. A. C. (2011). Establisment of adventitious root culture of Stevia rebaudiana Bertoni in roller bottle system. Plant Cell, Tissue and Organ Culture, 106(2), 329-335.

Saiman, M. Z., Mustafa, N. R., Schulte, A. E., Verpoorte, R., & Choi, Y. H. (2012). Induction, characterization, and NMR-based metabolic profiling of advetitious root cultures from leaf explants of Gynura procumbens. Plant Cell, Tissue and Organ Culture, 109(3), 465-475.

Sharma, P., Sharma, S., Yadav, S., Srivastava, A., Purohit, I., & Shrivastava, N. (2014). Plant derived bioactive molecules: culture vessels to bioreactors. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology (pp. 47-60). Springer Netherlands.

Steinmacher, D. A., Guerra, M. P., Saare-Surminski, K., & Lieberei, R. (2011). A temporary immersion system improve in vitro regeneration of peach palm through secondary somatic embryogenesis. Annals of Botany, 108(8), 1463-1475.

Wahyuni, D. K., Hafida, S. N., Ermayanti, T. M., Wardoyo, B. P. E., Purnobasuki, H., & Utami, E. S. W. (2017). Hairy roots induction on Justicia gendarussa by various density of Agrobacterium rhizogenes strain LB 510, Biosaintifika: Journal of Biology & Biology Education, 9(1), 26-32.

Wang, Y., & Weathers, P. J. (2007). Sugars proportionately affect artemisinin production. Plant cell reports, 26(7), 1073-1081.

Wang, J., Zhang, J., Gao, W., Wang, Q., Yin, S., Liu, H., & Man, S. (2013). Identification of triterpenoid and flavonoids, step-wise aeration treatment as well as antioxidant capacity of Glycyrrhiza uralensis Fisch. Cell. Industrial Crops and Products, 49, 675-681.

Wu, S. Q., Lian, M. L., Gao, R., Park, S. Y., & Piao, X. C. (2011). Bioreactor application on adventitious root culture of Astragalus membranaceus. In Vitro Cellular & Developmental Biology-Plant, 47(6), 719-724.

Yin, S., Zhang, Y., & Gao, W. (2014). Effects of nitrogen source and phosphate concentration on biomass and metabolites accumulation in adventitious root culture of Glycyrrhiza uralensis Fisch. Acta Physiologiae Plantarum, 36(4), 915-921.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.