Improving the Quality of Bio-Oil Produced from Rice Husk Pyrolysis by Extraction of its Phenolic Compounds

Dewi Selvia Fardhyanti, Achmad Chafidz, Bayu Triwibowo, Haniif Prasetiawan, Novia Noor Cahyani, Sinta Andriyani


Rice husk is an agricultural waste which contains 50% cellulose, 25%-30% lignin and 15%-20% silica. It can be used as raw material of bio-oil. Bio-oil is liquid which produced by pyrolysis process. Bio-oil can be produced from the rice husk at 773 and 873 K. The main component of Bio-oil from rice husk pyrolysis at 773 and 873 K is phenolic compounds about 47.98% and 62.65%, respectively. It causes corrosive, low heating value, high acidity, high viscosity and unstable that causing an engine damage. The presence of phenolic compound decreases the quality of bio-oil. Therefore, it needs a process such as liquid-liquid extraction to reduce the phenolic compound using 80% methanol and 80% chloroform as a solvent. The extract and raffinate phase were analyzed using UV-Vis spectrophotometer. The aim of this research determine the effect of temperature pyrolysis for the characterization of bio-oil, the stirring speed and the temperature of the extraction for the distribution coefficient and the yield of phenolic compound. The results showed that the characterization of bio-oil produced from rice husk pyrolysis at 773 and 873 K are densities 1,040 and 1,042 Kg/m3; viscosities 9.3488 and 9.5007 cSt; acid numbers 46.75 and 52.45 mg KOH/g; pH 2.5 and 3; flash points 426 and 423 K and heating values 3.229 and 3.339 MJ/kg, respectively. The highest distribution coefficient and yield were obtained at 323 K and a stirring speed of 250 rpm. The distribution coefficient of bio-oil produced by pyrolysis at 773 and 873 K is 1.504, and 1.528, respectively. The yields of bio-oil produced by pyrolysis at 773 and 873 K are 58.885%, and 48.429%, respectively. 



Bio-oil; Extraction; Pyrolysis; Risk husk; Phenolic compounds

Full Text:



Alfian, A. 2017. Proses Upgrading Secara Thermal Dan Berkatalis Alam Terhadap Minyak Jarak Pagar (Jatropha Curcal L.) Dan Minyak Nyamplung (Calophyllum Inomphyllum L.). Thesis. Jurusan Teknik Mesin. Universitas Lampung, Bandar Lampung.

Basu, P. 2010. Biomassa Gasification and Pyrolisis Practical Design and Theory. Elsevier.

BPS (Badan Pusat Statistika). 2018. Produksi Padi Menurut Provinsi (Ton). BPS Pusat, Jakarta.

Buttler, E., Devlin, G., Meier, D., McDonnell, K. 2011. A Review of Recent Laboratory Research and Commercial Development in Fast Pyrolysis and Upgrading. Renewable and Sustainable Energy Reviews. 15(8): 4171-4186.

Demirbas, A. 2007. The Influence of Temperature on The Yields of Compounds Existingin Bio-Oils Obtained from Biomass Samples via Pyrolysis. Fuel Processing Technology. 88(6): 591–597.

Durling, N. E., Catchpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Foo, L. Y., Perry, N. B. 2007. Extraction of Phenolics and Essential Oil from Dried Sage (Salvia Officinalis) using Ethanol–Water Mixtures. Food Chemistry. 101(4): 1417–1424.

Ellens C. J., Brown, R.C. 2012. Optimization of Free Fall Reactor for Production of Fast Pyrolysis Bio-oil. Bioresource Technology. 103(1): 374-380.

Erawati, E., Budiyati, E., Sediawan, W. B. 2014. Karakteristik Produk Pirolisis Dari Sekam Padi, Tongkol Jagung, Dan Serbuk Gergaji Kayu Jati Menggunakan Katalis Zeolit. Thesis. Universitas Muhamma diyah Surakarta, Surakarta.

Erawati, E., Sediawan, W.S, Mulyono, P. 2013. Karakteristik Bio-Oil Hasil Pirolisis Ampas Tebu. Jurnal Kimia Terapan Indonesia. 15(2): 47-55.

ESDM (Energi Dan Sumber Daya Mineral). 2016. Jurnal Energi. 2nd Ed. Kementerian Energi Dan Sumber Daya Mineral. Jakarta: Ditjen EBTKE.

Fardhyanti, D. S., Damayanti, A. 2017. Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell. International Journal of Chemical and Molecular Engineering. 11(9): 651-654.

Fardhyanti, D. S., Megawati, M., Istanto, H., Anajib, M. K., Prayogo, P., Habibah, U. 2018. Extraction of Phenol from Bio-oil Produced by Pyrolysis of Coconut Shell. Journal of Physical Science. 29(Supp. 2): 195–202.

Fardhyanti, D. S., Megawati, M., Kurniawan, C. P., Lestari, R. A. S., Triwibowo, B. 2018. Producing Bio-Oil from Coconut Shell by Fast Pyrolysis Processing. MATEC Web of Conferences. 237: 1-5.

Fardhyanti, D. S., Mulyono, P., Sediawan, W. B., Hidayat, M. 2012. Separation of Phenolic Compounds from Coal Tar. 3rd International Conference on Chemistry and Chemical Engineering IPCBEE. 145– 149.

Fardhyanti, D. S., Prasetiawan, H., Hermawan, H., Sari, L. S. 2017. Ternary Liquid-Liquid Equilibria for The Phenolic Compounds Extraction from Artificial Textile Industrial Waste. AIP Conference Proceedings. 1818(1): 1-5.

Fardhyanti, D. S., Sediawan, W. B., Mulyono, P. 2015. Complex Extraction of Phenol, o-Cresol and p-Cresol from Model Coal Tar Using Methanol and Acetone Solutions. British Journal of Applied Science & Technology. 8(5): 427-436.

Fardhyanti, D. S., Triwibowo, B., Istanto, H., Anajib, M. K., Larasati, A., Oktaviani, W. 2019. Liquid Phase Equilibrium of Phenol Extraction from Bio-Oil Produced by Biomass Pyrolysis Using Thermodynamic Models. Chinese Journal of Chemical Engineering. 27 (2): 391-399.

Guo, J., Ruan, R., Zhang, Y. 2012. Hydrotreating of Phenolic Compounds Separated from Bio-oil to Alcohols. Industrial & Engineering Chemistry Research. 51(19): 6599−6604.

Guo, X., Wang, S., Wang, Q., Guo , Z., Luo, Z. 2011. Properties of Bio-oil from Fast Pyrolysis of Rice Husk. Chinese Journal of Chemical Engineering. 19(1): 116-121.

Islam, M. R., Parveen, M., Haniu, H. 2010. Properties of Sugarcane Waste-Derivedbio-Oils Obtained by Fixed-Bed Fire-Tube Heating Pyrolysis. Bioresource Technology. 101 (11): 4162-4168.

Ismadji, S. 2012. Kulit Durian Sebagai Bahan Baku Pembuatan Bio-oil: Sumber Energi Terbarukan. Seminar Nasional Soebardjo Brotohardjono IX, Jurusan Teknik Kimia. Unika Widya Mandala, Surabaya.

Ismail, M. S., Waliuddin, A. M. 1996. Effect of Rice Husk Ash on High Strength Concrete, Construction and Building Materials. 10(1): 521-526.

Jahirul, M. I., Rasul, M.G., Chowdhury, A. A., Ashwath, N. 2012. Biofuels Production through Biomass Pyrolysis: A Technological Review. Energies. 5(12): 4952-5001.

Jazbinsek, M. 2008. Organic Phenolic Configurationally Locked Polyene Single Crystals for Electro-optic and Terahertz Wave Applications. Journal Recommendation Service. 18 (2008): 3242-3250.

Jieni, L. 2013. Biological Conversion of Pyrolytic Products to Ethanol and Lipids. Thesis . Department of Biological Systems Engineering. Washington State University, Washington.

Juntachote, T., Berghofer, E., Bauer, F., Siebenhandl, S. 2006. The Application of Response Surface Methodology to The Production of Phenolic Extracts of Lemon Grass, Galangal, Holy Basil and Rosemary. International Journal of Food Science and Technology. 41(2): 121–133.

Kim, S. J., Jung, S. H., Kim, J. S. 2010. Fast Pyrolysis of Palm Kernel Shells: Influence of Operation Parameter on The Bio-Oil Yield of Phenol and Phenolic Compounds. Bioresource Technology. 101 (23): 9294-9300.

Kockar, O., Onay, O., Putun, A. E. 2000. Fixed Bed Pyrolysis of Hazelnut Shell: Study on Mass Transfer Limitations on Product Yields and Characterization of The Pyrolysis Oil. Energy Source. 22(10): 913-924.

Kongnum, P., Ratanawilai, S. 2014. Catalytic Pyrolysis of Coconut Shell for Bio-oil. Int’l Journal of Advances in Chemical Engineering & Biological Sciences. 1(1): 63-66.

Lin, Y. J., Chen-Lung, H., Seng-Rung, W. 2013. Characterization of Bio-Oils from Fast Pyrolysis of Thorny Bamboo (Bambusa Stenostachya) and Long-Branch Bamboo (B. Dolichoclada). Taiwan Journal for Science. Research. 28(4): 203-216.

Mantilla, S. V., Manrique, A. M., Gauthier-Maradei, A. 2015. Methodology for Extraction of Phenolic Compounds of Bio-oil from Agricultural Biomass Wastes. Waste and Biomass Valorization. 6(3): 371–383.

Muthia, R. 2011. Peningkatan Kualitas Bio-Oil dari Tandan Kosong Kelapa Sawiyt Menggunakan Metode Fast Pyrolysis Dengan Katalis Zeolit. Thesis. Fakultas Teknik. Program studi teknik kimia. Universitas Indonesia, Depok.

Nayan, N. K., Kumar, S., Singh, R. K. 2013. Production of The Liquid Fuel by Thermalpyrolysis of Neem Seed. Fuel. 103 (January): 437-443.

Ozbay, M., Apaydin-Varol, E., Uzun, B., Putun, A. 2008. Characterization of Bio-Oil Obtained from Fruit Pulp Pyrolysis. Energy. 33(8): 1233-1240.

Patel, R. N., Bandyopadhyay, S., Ganesh, A. 2011. Extraction of Cardanol and Phenol from Bio-Oils Obtained Through Vacuum Pyrolysis of Biomass using Supercritical Fluid Extraction. Journal of Energy. 36 (3): 1535-1542.

Rahayu, P. W., Ghifari, A. S., Kristianto, A., Aprianti, D. D., Rachmawati, D. E. 2012. Produksi Minyak Bio dari Reaksi Fast Pirolysis Biomassa Sekam Padi (Oryza sativa L.) Menggunakan Reaktor Bubbling Fluidized Bed Sebagai Bahan Bakar Alternatif Green Diesel. Thesis. Universitas Indonesia, Depok.

Rocha, G. J. M., Gon, A. R., Alvesb, A., Oliveiraa, B. R., Olivaresa, E. G., Rossella, C. E. V. 2012. Steam Explosion Pretreatment Reproduction and Alkaline Delignification Reactions Performed on A Pilot Scale with Sugarcane Bagasse for Bioethanol Production. Industrial Crops and Products. 35(1): 274– 279.

Rout, T., Pradhan, D., Singh, R. K., Kumari, N. 2016. Exhaustive Study of Productsobtained from Coconut Shell Pyrolysis. Journal of Environmental Chemical Engineering. 4(3): 3696–3705.

Sahan, Y., Rahma, S., Agustin, D. 2013. Konversi Tongkol Jagung Menjadi Bio-oil dengan Katalis Zeolit Alam. Thesis. Jurusan Teknik Kimia. Fakultas Teknik. Universitas Riau, Pekanbaru.

Sensoz, S., Demiral, L., Gercel, H. F. 2006. Olive Bagasse (Olea europea L.) Pyrolysis. Bioresource Technology. 97 (3): 429-436.

Sun, P., Heng, M., Sun, S., Chen, J. 2010. Direct Liquefaction of Paulownia in Hot Compressed Water: Influence of Catalysts. Energy. 35(12): 5421-5429.

Suyitno, S., Arifin, Z., Hadi, S., Hidayat, Y. 2009. Bio Oil dari Pirolisis Lambat Sekam Padi Basah: Sifat Fisik dan Unsur Kimia. Jurnal Mekanika. 7(2): 27-32.

Treedet, W., Taechajedcadarungsri, S., Suntivaracorn, R. 2017. Fast pyrolysis of Sugarcane Bagasse in Circulating Fluidized Bed Reactor-Part B: Modelling of Bio-Oil Production. Energy Procedia. 138 (October): 806-810.

Tsai, W. T., Lee, M. K., Chang, Y. M. 2007. Fast Pyrolysis of Rice Husk: Product Yields and Compositions. Bioresource Technology. 98 (1): 22-28.

Varma, A. K., Mondal, P. 2017. Pyrolysis of Sugarcane Baggase in Semi Batch Reactor: Effects of Process Parameters on Product Yields and Characterization of Products. Industrial Crops and Products. 95 (January): 704–717.

Wibowo, S. 2013. Karakteristik Bio-oil Serbuk Gergaji Sengon (Paraserianthes Falcataria L. Nielsen) Menggunakan Proses Pirolisis Lambat. Jurnal Penelitian Hasil Hutan 31(4): 258-270.

Wijanarko, B., Putri, L. D. 2012. Ekstraksi Lipid dari Mikroalga (Nanochloropsis sp.) dengan Solven Methanol dan Chloroform. Jurnal Teknologi Kimia dan Industri. 1(1): 130-138.

Yu, F., Steele, P., Gajjela, S. K., Hassan, E. B., Mitchell, B. 2009. Production of Hydrocarbons from Biomass Fast Pyrolysis and Hydrodreoxygenation. Thesis. Departement of Forest Products. Mississipi University, Mississipi.

Zhang, L., Liu, R., Yin, R., Mei, Y. 2013. Upgrading of Bio-oil from biomass fast pyrolysis in China: A review. Renewable and Sustainable Energy Review. 24 (August): 66-72.

Zhou, Y., Gao, F., Zhao, Y., Lu, J. 2014. Study on The Extraction Kinetics of Phenolic Compounds from Petroleum Refinery Waste Lye. Journal of Studi Chemical Society. 18(5): 589-592.


  • There are currently no refbacks.