Surface Modification With Gelatin For Polyurethane Vascular Grafts: A Review

Iman Adipurnama, Ming Chien Yang, Tomasz Ciach, Beata Butruk Raszeja


The means for developing synthetic vascular grafts to replace blood vessels is increasing extensively because of the limited supply of autologous vessels. Synthetic polymers as the alternatives still suffer from restenosis and thrombus formation. Natural polymers, on the other hand, are commonly biocompatible and biodegradable, compliment the synthetic ones. Blending, grafting and coating of natural polymers have been proposed to improve surface properties of synthetic polymers. Gelatin is a promising candidate to help improving synthetic vascular grafts surface owing to its ability to promote cell adhesion without promoting platelet aggregation at its surface. In this review, several techniques to incorporate gelatin onto synthetic polymers, mainly polyurethane, for vascular grafts application are summarized, together with the recent updates and potential development in the future.


Surface modification; vascular grafts; polyurethane; gelatin; hemocompatibility; endothelialization

Full Text:



Adipurnama, I., Yang, M. C., Ciach, T., Butruk-Raszeja, B. 2017. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterial Science. 5(1): 22–37.

Alves, P., Coelho, J. F. J., Haack, J., Rota, A., Bruinink, A., Gil, M. H. 2009. Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal. 45(5): 1412–1419.

Andersson, J., Libby, P., Hansson, G.K. 2010. Adaptive immunity and atherosclerosis. Clinical Immunology. 134(1): 33–46.

Baguneid, M. S., Seifalian, A. M., Salacinski, H. J., Murray, D., Hamilton, G., Walker, M. G. 2006. Tissue engineering of blood vessels. British Journal of Surgery Society. 93(3): 282-290.

Boffito, M., Sartori, S., Ciardelli, G. 2014. Polymeric scaffolds for cardiac tissue engineering: Requirements and fabrication technologies. Polymer International. 63(1): 2–11.

Burke, A., Hasirci, N. 2004. Biomaterials: From Molecules to Engineered Tissues. 1st Edition. Springer US, New York.

Butruk-Raszeja, B. A., Trzaskowska, P. A., Kuźminska, A., Ciach, T. 2016. Polyurethane modification with acrylic acid by Ce(IV)-initiated graft polymerization. Open Chemistry. 14(1): 206–214.

Catto, V., Farè, S., Cattaneo, I., Figliuzzi, M., Alessandrino, A., Freddi, G., Remuzzic, A., Tanzi, M. C. 2015. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Materials Science and Engineering: C. 54(1): 101-111.

Caves, J. M., Kumar, V. A., Martinez, A. W., Kim, J., Ripberger, C. M., Haller, C. A., Chaikof, E. L. 2010. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials. 31(27): 7175-7182.

Chan, B. P., Leong, K. W. 2008. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Europian Spine Journal. 17(Suppl 4): 467–479.

Chateleta, C., Damourb, O., Domard, A., 2001. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 22(3): 261-268.

Chen, J. P., Su, C. H. 2011. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomaterialia. 7(1): 234–243.

Chen, P.-H., Liao, H.-C., Hsu, S.-H., Chen, R.-S., Wu, M.-C., Yang, Y.-F., Wu, C.-C., Chen, M.-H., Su, W.-F. 2015. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Advances. 5(9): 6932–6939

Detta, N., Errico, C., Dinucci, D., Puppi, D., Clarke, D. A., Reilly, G. C., Chiellini, F. 2010. Novel electrospun polyurethane/ gelatin composite meshes for vascular grafts. Journal of Materials Science: Materials in Medicine 21(5): 1761–1769.

Duconseille, A., Astruc, T., Quintana, N., Meersman, F., Lhoutellier, V. S. 2015 Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids. 43: 360–376.

Elomaa, L., Yang, Y. P. 2017. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. Tissue Engineering Part B: Reviews. 23(5): 436–450.

Farris, S., Song, J., Huang, Q. 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry. 58(2): 998–1003.

Ferreira, P., Alves, P., Coimbra, P., Gil, M. H. 2015. Improving polymeric surfaces for biomedical applications: a review. Journal of Coatings Technology and Research. 12: 463–475.

Goonoo, N., Bhaw-Luximon, A., Bowlin, G. L., Jhurry, D. 2013. An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polymer International. 62(4): 523–533.

Han, J., Lazarovici, P., Pomerantz, C., Chen, X., Wei, Y., Lelkes, P. I. 2011. Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules. 12(2): 399–408.

Hasan A, Memic A, Annabi N, Hossain, M., Paula, A., Dokmecia, M. R., Dehghani, F., Khademhosseini, A. 2014. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia. 10(1): 11–25.

Hashizume, R., Hong, Y., Takanari, K., Fujimoto, K. L., Tobita, K., Wagner, W. R. 2013. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials. 34(30): 7353-7363.

He, K., Wang, X. 2011. Rapid prototyping of tubular polyurethane and cell/hydrogel constructs. Journal of Bioactive and Compatible Polymers. 26(4): 363–374.

He, W., Hu, Z., Xu, A., Liu, R., Yin, H., Wang, J., Wang, S. 2013. The preparation and performance of a new polyurethane vascular prosthesis. Cell Biochemistry and Biophysics. 66(3): 855–66.

Hou, L., Peck, Y., Wang, X., Wang, D. 2014. Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity. Science China Chemistry. 57(4): 596–604.

Howard, G. T. 2002. Biodegradation of polyurethane: A review. International Biodeterioration & Biodegradation. 49(4): 245–252.

Huang, Y. Y., Kuo, W. T., Huang, H. Y., Chou, M. J., Wu, M. C., Huang, Y. Y. 2011. Surface modification of gelatin nanoparticles with polyethylenimine as gene vector. Journal of Nanomaterials. 2011: 646538.

Jalaja, K., James, N. R. 2015. Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules. 73: 270–278.

Junter, G. A., Thébault, P., Lebrun, L. 2016. Polysaccharide-based antibiofilm surfaces. Acta Biomaterialia. 30(1): 13–25.

Kucińska-Lipka, J., Gubańska, I., Janik, H. 2013. Gelatin-modified polyurethanes for soft tissue scaffold. The Scientific World Journal. 2013(450132): 1-12.

Kucińska-Lipka, J., Gubańska, I., Janik, H. 2014. Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin,polyurethane/starch, polyurethane/cellulose. Polimery. 59(3): 195–276.

Li, M., Guo, Y., Wei, Y., MacDiarmid, A. G., Lelkes, P. I. 2006. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials. 27(13): 2705–2715.

Li, S., Sengupta, D., Chien, S. 2014. Vascular tissue engineering: From in vitro to in situ. WIREs System Biologyand Medicine. 6(1): 61–76.

Lin, W. C., Yu, D. G., Yang, M. C. 2005. Blood compatibility of thermoplastic polyurethane membrane immobilized with water-soluble chitosan/dextran sulfate. Colloids and Surfaces B: Biointerfaces. 44(2-3): 82–92.

Liu. Y., Chan-Park, M. B. 2009. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 30(2): 196–207.

Losi, P., Mancuso, L., Al Kayal, T., Celi, S., Briganti, E., Gualerzi, A., Volpi, S., Cao, G., Soldani, G. 2015. Development of a gelatin-based polyurethane vascular graft by spray, phase-inversion technology. Biomed Mater 10(4): 045014.

Ma, P. X. 2008. Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews. 60(2): 184–198.

Ma, Z., Mao, Z., Gao, C. 2007. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: Biointerfaces. 60(2): 137–157.

Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., Boesel, L. F., Oliveira, J. M., Santos, T. C., Marques, A. P., Neves, N. M., Reis, R. L. 2007. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of The Royal Society Interface. 4(17): 999–1030.

McKenna, K. A., Hinds, M. T., Sarao, R. C., Wu, P. C., Maslen, C. L., Glanville, R. W., Babcock, D., Gregorya, K. W. 2012. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomaterialia. 8(1): 225–233.

Meyers, S. R., Grinstaff, M. W. 2012. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chemical Reviews. 112(3): 1615–1632.

Mironov, V., Kasyanov, V., Shu, X. Z., Eisenberg, C., Eisenberg, L., Gonda, S., Trusk, T., Markwald, R. R., Prestwich, W. W. 2005. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials. 26(36): 7628–7635.

Nagiah, N., Johnson, R., Anderson, R., Elliiott, W., Tan, W. 2015 Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Langmuir. 31(47): 12993–13002.

Park, S., Hwang, S., Lee, J. 2011. PH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying. Chemical Engineering Journal. 169(1-3): 348–357.

Patel, H. N., Thai, K. N., Chowdhury, S., Singh, R., Vohra, Y. K., Thomas, T. 2015. In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft. Progress in Biomaterial. 4(2-4): 67–76.

Pezzoli, D., Cauli, E., Chevallier, P., Farè, S., Mantovani, D. 2017. Biomimetic coating of cross‐linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research Part A. 105(9): 2405-2415.

Pierce, W. S., Branch, S., Insti, N. H. 1968. Segmented Polyurethane : A Polyether Polymer. Journal of Biomedical Material Research. 2(1): 121–130.

Punnakitikashem, P., Truong, D., Menon, J. U., Nguyen, K. T., Hong, Y. 2014 Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomaterialia. 10(11): 4618–4628.

Qi, P., Maitz, M. F., Huang, N. 2013. Surface modification of cardiovascular materials and implants. Surface and Coatings Technology. 233(October): 80–90.

Qi, P., Yang, Y., Maitz, F. M., Huang, N. 2013. Current status of research and application in vascular stents. Chinese Science Bulletine. 58(35): 4362–4370.

Rabotyagova, O. S., Cebe, P., Kaplan, D. L. 2008. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Materials Science and Engineering: C. 28(8): 1420–1429.

Ravi, S., Chaikof, E. 2010. Biomaterials for vascular tissue engineering. Regenerative Medicine. 5(1): 107–120.

Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., Lif , W. 2015. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. 44(15): 5680-5742.

Rhodes, J. M., Simons, M. 2007. The extracellular matrix and blood vessel formation: not just a scaffold. Journal of Cellular and Molecular Medicine. 11(2): 176–205.

Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., Breuer, C. K. 2014. In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews. 20(6): 628–640.

Saber, M. M. 2019. Strategies for surface modification of gelatin-based nanoparticles. Colloids and Surfaces B: Biointerfaces. 183(1): 110407.

Salehi, M., Nosar, M. N., Barough, S. E., Nourani, M., Khojasteh, A., Farzamfar, S., Mansouri, K., Ai, J. 2017. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cellular and Molecular Neurobiology. 38(3): 703-713.

Sartori, S., Rechichi, A., Vozzi, G., D’Acunto, M., Heine, E., Giusti, P., Ciardelli, G. 2008. Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers. Reactive and Functional Polymers. 63(3): 809-821.

Saucedo-Rivalcoba, V., Martínez-Hernández, A. L., Martínez-Barrera, G., Velasco-Santos, C., Castaño, V. M. 2011. Chicken feathers keratin)/polyurethane membranes. Applied Physics A. 104(1): 219–228.

Seal, B. 2001. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports. 34(4-5): 147–230.

Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., Bowlin, G. L. 2009. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews. 61(12):1007–1019.

Sgarioto, M., Adhikari, R., Gunatillake, P. A., Moore, T., Patterson, J., Nagel, M. D., Malherbe, F. 2015. High modulus biodegradable polyurethanes for vascular stents: evaluation of accelerated in vitro degradation and cell viability of degradation products. Frontiers in Bioengineering and Biotechnology. 3(May): 1-13.

Sharifpoor, S., Simmons, C. A., Labow, R. S., Santerre, J. P. 2011 Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials. 32(21): 4816–4829.

Shin, H., Jo, S., Mikos, A. G. 2003. Biomimetic materials for tissue engineering. Biomaterials. 24(24): 4353–4364.

Shoichet, M. S. 2010. Polymer scaffolds for biomaterials applications. Macromolecu les. 43(2): 581–591.

Singh, S., Rao, K. V. R., Venugopal, K., Manikandan, R. 2002. Alteration in Dissolution Characteristics of Gelatin-Containing Formulations A Review of the Problem, Test Methods, and Solutions. Pharmaceutical Technology. 23: 36–58.

Singha, K., Singha, M. 2012. Cardio Vascular Grafts: Existing Problems and Proposed Solutions. International Journal of Agricultural and Biological Engineering 2(2): 1–8.

Stoppel, W. L., Ghezzi, C. E., McNamara, S. L., Black III, L. D., Kaplan, D. L. 2014. Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. 43(2015): 657-680.

Tan, D., Liu, L., Li, Z., Fu, Q. 2015. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes. Journal of Biomedical Research. 103(8): 2711-2719.

Thakur, V. K., Thakur, M. K. 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers. 109:102–117.

Thottappillil, N., Nair, P. D. 2015. Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management. 11(2015): 79–91.

Torricelli P, Gioffrè M, Fiorani A, Panzavolta, S., Gualandi, C., Fini, M., Focarete, M. L., Bigi, A. 2014. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: Modulation of mechanical properties and chondrocyte response as a function of composition. Materials Science and Engineering: C. 36(1): 130–138.

Wang, H., Feng, Y., Behl, M., Lendlein , A., Zhao, H., Xiao, R., Lu, J., Zhang, L., Guo, J. 2011. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels. Frontiers of Chemical Science and Engineering. 5(3): 392–400.

Wang, H., Feng, Y., Zhao, H., Xiao, R., Lu, J., Zhang, L., Guo, J. 2012. Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromolecular Research. 20(4): 347-350.

Wang, X., He, K., Zhang, W. 2013. Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane–cell/hydrogel construct. Journal of Bioactive and Compatible Polymers. 28(4): 303-319.

Wong, C. S., Liu, X., Xu, Z., Lin, T., Wang, X. 2013. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. Journal of Materials Science: Materials in Medicine. 24(8): 1865–1874.

Xiong, G. M., Yuan, S., Tan, C. K., Wang, J. K., Liu, Y., Tan, T. T. Y., Tan, N. S., Choong, C. 2014. Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces. Journal of Materials Chemistry B. 2(5): 485–493.

Xu, F., Nacker, J. C., Crone, W. C., Masters, K. S. 2008. The haemocompatibility of polyurethane-hyaluronic acid copolymers. Biomaterials. 29(2): 150–160.

Xu, W., Wang, X., Yan, Y., Zhang, R. 2008. A Polyurethane-Gelatin Hybrid Construct for Manufacturing Implantable Bioartificial Livers. Journal of Bioactive and Compatible Polymers. 23(5): 409–422.

Yamamoto, S., Okamoto, H., Haga, M., Shigematsu, K., Miyata, T., Watanabe, T., Ogawa, Y., Takagi, Y., Asakura, T., 2016. Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin. Journal of Material Chemistry B. 4(5): 938–946.

Ye, S. H., Hong, Y., Sakaguchi, H., Shankarraman, V., Luketich, S. K., D’Amore, A., Wagner, W. R. 2014. Nonthrombogenic, Biodegradable Elastomeric Polyurethanes with Variable Sulfobetaine Content. ACS Applied Materials & Interfaces. 6(24): 22796-22806.

Yuan, S., Xiong, G., Roguin, A., Choong, C. 2012. Immobilization of gelatin onto poly(Glycidyl Methacrylate)- grafted polycaprolactone substrates for improved cell-material interactions. Biointerphases. 7(1): 1–12.

Yuan, W., Feng, Y., Wang, H., Yang, D., An, B., Zhang, W., Khan, M., Guo, J. 2013. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C. 33(7): 3644–3651.

Zhan, J., Morsi, Y., Ei-Hamshary, H., Al-Deyab, S. S., Mo, X. 2016. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers. Frontiers of Materials Science. 10(1): 90–100.

Zhang, K., Liu, T., Li, J. A., Chen, J. Y., Wang, J., Huang, N. 2014. Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization. Journal of Biomedical Materials Resesearch - Part A. 102(2): 588–609.

Zhang, X., Battiston, K. G., McBane, J. E., Matheson, L. A., Labow, R. S., Santerre, J. P. 2016. Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within in vitro and in vivo environments. Advances in Polyurethane Biomaterials. 75-114.

Zhou, X., Zhang, T., Guo, D., Gu, N. 2014. A facile preparation of poly(ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 441: 34–42.

Zhu, Y., Gao, C., He, T., Shen, J. 2004. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials. 25(3): 423–430.

Zhu, Y., Gao, C., Shen, J. 2002. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials. 23(24): 4889–4895.

Zia, F., Zia, K. M., Zuber, M., Kamal, S., Aslam, N. 2015. Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers. 134:784–798.

Zia, K. M., Zia, F., Zuber, M., Rehman, S., Ahmad, M. N. 2015. Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules. 79:377–387.

Zuber, M., Zia, F., Zia, K. M., Tabasum, S., Salman, M., Sultan, N. 2015. Collagen based polyurethanes-A review of recent advances and perspective. International Journal of Biological Macromolecules. 80:366–374.


  • There are currently no refbacks.